481 research outputs found

    Notes to Robert et al.: Model criticism informs model choice and model comparison

    Full text link
    In their letter to PNAS and a comprehensive set of notes on arXiv [arXiv:0909.5673v2], Christian Robert, Kerrie Mengersen and Carla Chen (RMC) represent our approach to model criticism in situations when the likelihood cannot be computed as a way to "contrast several models with each other". In addition, RMC argue that model assessment with Approximate Bayesian Computation under model uncertainty (ABCmu) is unduly challenging and question its Bayesian foundations. We disagree, and clarify that ABCmu is a probabilistically sound and powerful too for criticizing a model against aspects of the observed data, and discuss further the utility of ABCmu.Comment: Reply to [arXiv:0909.5673v2

    Statistical modelling of summary values leads to accurate Approximate Bayesian Computations

    Full text link
    Approximate Bayesian Computation (ABC) methods rely on asymptotic arguments, implying that parameter inference can be systematically biased even when sufficient statistics are available. We propose to construct the ABC accept/reject step from decision theoretic arguments on a suitable auxiliary space. This framework, referred to as ABC*, fully specifies which test statistics to use, how to combine them, how to set the tolerances and how long to simulate in order to obtain accuracy properties on the auxiliary space. Akin to maximum-likelihood indirect inference, regularity conditions establish when the ABC* approximation to the posterior density is accurate on the original parameter space in terms of the Kullback-Leibler divergence and the maximum a posteriori point estimate. Fundamentally, escaping asymptotic arguments requires knowledge of the distribution of test statistics, which we obtain through modelling the distribution of summary values, data points on a summary level. Synthetic examples and an application to time series data of influenza A (H3N2) infections in the Netherlands illustrate ABC* in action.Comment: Videos can be played with Acrobat Reader. Manuscript under review and not accepte

    Simulation-based model selection for dynamical systems in systems and population biology

    Get PDF
    Computer simulations have become an important tool across the biomedical sciences and beyond. For many important problems several different models or hypotheses exist and choosing which one best describes reality or observed data is not straightforward. We therefore require suitable statistical tools that allow us to choose rationally between different mechanistic models of e.g. signal transduction or gene regulation networks. This is particularly challenging in systems biology where only a small number of molecular species can be assayed at any given time and all measurements are subject to measurement uncertainty. Here we develop such a model selection framework based on approximate Bayesian computation and employing sequential Monte Carlo sampling. We show that our approach can be applied across a wide range of biological scenarios, and we illustrate its use on real data describing influenza dynamics and the JAK-STAT signalling pathway. Bayesian model selection strikes a balance between the complexity of the simulation models and their ability to describe observed data. The present approach enables us to employ the whole formal apparatus to any system that can be (efficiently) simulated, even when exact likelihoods are computationally intractable.Comment: This article is in press in Bioinformatics, 2009. Advance Access is available on Bioinformatics webpag

    A dimensionless number for understanding the evolutionary dynamics of antigenically variable RNA viruses.

    Get PDF
    Antigenically variable RNA viruses are significant contributors to the burden of infectious disease worldwide. One reason for their ubiquity is their ability to escape herd immunity through rapid antigenic evolution and thereby to reinfect previously infected hosts. However, the ways in which these viruses evolve antigenically are highly diverse. Some have only limited diversity in the long-run, with every emergence of a new antigenic variant coupled with a replacement of the older variant. Other viruses rapidly accumulate antigenic diversity over time. Others still exhibit dynamics that can be considered evolutionary intermediates between these two extremes. Here, we present a theoretical framework that aims to understand these differences in evolutionary patterns by considering a virus's epidemiological dynamics in a given host population. Our framework, based on a dimensionless number, probabilistically anticipates patterns of viral antigenic diversification and thereby quantifies a virus's evolutionary potential. It is therefore similar in spirit to the basic reproduction number, the well-known dimensionless number which quantifies a pathogen's reproductive potential. We further outline how our theoretical framework can be applied to empirical viral systems, using influenza A/H3N2 as a case study. We end with predictions of our framework and work that remains to be done to further integrate viral evolutionary dynamics with disease ecology

    Explaining rapid reinfections in multiple-wave influenza outbreaks: Tristan da Cunha 1971 epidemic as a case study.

    Get PDF
    Influenza usually spreads through the human population in multiple-wave outbreaks. Successive reinfection of individuals over a short time interval has been explicitly reported during past pandemics. However, the causes of rapid reinfection and the role of reinfection in driving multiple-wave outbreaks remain poorly understood. To investigate these issues, we focus on a two-wave influenza A/H3N2 epidemic that occurred on the remote island of Tristan da Cunha in 1971. Over 59 days, 273 (96%) of 284 islanders experienced at least one attack and 92 (32%) experienced two attacks. We formulate six mathematical models invoking a variety of antigenic and immunological reinfection mechanisms. Using a maximum-likelihood analysis to confront model predictions with the reported incidence time series, we demonstrate that only two mechanisms can be retained: some hosts with either a delayed or deficient humoral immune response to the primary influenza infection were reinfected by the same strain, thus initiating the second epidemic wave. Both mechanisms are supported by previous empirical studies and may arise from a combination of genetic and ecological causes. We advocate that a better understanding and account of heterogeneity in the human immune response are essential to analysis of multiple-wave influenza outbreaks and pandemic planning.Published versio

    The pro-active resource management departments of constituent entities of the tourism cluster

    Get PDF
    The proposed approach to the pro-active resource management departments of constituent entities of the tourism cluster, in particular of housekeeping service of the hotel. The developed methodology of the pro-active resource management of housekeeping service of the hotel was described

    Non-linear regression models for Approximate Bayesian Computation

    Full text link
    Approximate Bayesian inference on the basis of summary statistics is well-suited to complex problems for which the likelihood is either mathematically or computationally intractable. However the methods that use rejection suffer from the curse of dimensionality when the number of summary statistics is increased. Here we propose a machine-learning approach to the estimation of the posterior density by introducing two innovations. The new method fits a nonlinear conditional heteroscedastic regression of the parameter on the summary statistics, and then adaptively improves estimation using importance sampling. The new algorithm is compared to the state-of-the-art approximate Bayesian methods, and achieves considerable reduction of the computational burden in two examples of inference in statistical genetics and in a queueing model.Comment: 4 figures; version 3 minor changes; to appear in Statistics and Computin

    Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study

    Full text link
    The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation, and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.Comment: Submitted to 'Systems Medicine' as a book chapte

    Goodness of fit for models with intractable likelihood

    Get PDF
    Routine goodness-of-fit analyses of complex models with intractable likelihoods are hampered by a lack of computationally tractable diagnostic measures with wellunderstood frequency properties, that is, with a known sampling distribution. This frustrates the ability to assess the extremity of the data relative to fitted simulation models in terms of pre-specified test statistics, an essential requirement for model improvement. Given an Approximate Bayesian Computation setting for a posited model with an intractable likelihood for which it is possible to simulate from them, we present a general and computationally inexpensive Monte Carlo framework for obtaining p-valuesthat are asymptotically uniformly distributed in [0, 1] under the posited model when assumptions about the asymptotic equivalence between the conditional statistic and the maximum likelihood estimator hold. The proposed framework follows almost directly from the conditional predictive p-value proposed in the Bayesian literature. Numerical investigations demonstrate favorable power properties in detecting actual model discrepancies relative to other diagnostic approaches. We illustrate the technique on analytically tractable examples and on a complex tuberculosis transmission model.Authors have been founded by MINECO-Spain projects PID2019-104790GB-I00 (M.E. Castellanos and S. Cabras) and Wellcome Trust fellowship WR092311MF (O. Ratmann)
    corecore