97 research outputs found
Management of uncomplicated malaria in febrile under five-year-old children by community health workers in Madagascar: reliability of malaria rapid diagnostic tests
<p>Abstract</p> <p>Background</p> <p>Early diagnosis, as well as prompt and effective treatment of uncomplicated malaria, are essential components of the anti-malaria strategy in Madagascar to prevent severe malaria, reduce mortality and limit malaria transmission. The purpose of this study was to assess the performance of the malaria rapid diagnostic tests (RDTs) used by community health workers (CHWs) by comparing RDT results with two reference methods (microscopy and Polymerase Chain Reaction, PCR).</p> <p>Methods</p> <p>Eight CHWs in two districts, each with a different level of endemic malaria transmission, were trained to use RDTs in the management of febrile children under five years of age. RDTs were performed by CHWs in all febrile children who consulted for fever. In parallel, retrospective parasitological diagnoses were made by microscopy and PCR. The results of these different diagnostic methods were analysed to evaluate the diagnostic performance of the RDTs administered by the CHWs. The stability of the RDTs stored by CHWs was also evaluated.</p> <p>Results</p> <p>Among 190 febrile children with suspected malaria who visited CHWs between February 2009 and February 2010, 89.5% were found to be positive for malaria parasites by PCR, 51.6% were positive by microscopy and 55.8% were positive by RDT. The performance accuracy of the RDTs used by CHWs in terms of sensitivity, specificity, positive and negative predictive values was greater than 85%. Concordance between microscopy and RDT, estimated by the Kappa value was 0.83 (95% CI: 0.75-0.91). RDTs stored by CHWs for 24 months were capable of detecting <it>Plasmodium falciparum </it>in blood at a level of 200 parasites/μl.</p> <p>Conclusion</p> <p>Introduction of easy-to-use diagnostic tools, such as RDTs, at the community level appears to be an effective strategy for improving febrile patient management and for reducing excessive use of anti-malarial drugs.</p
Adherence to Artemisinin-based Combination Therapy for the Treatment of Malaria: A Systematic Review of the Evidence.
Increasing access to and targeting of artemisinin-based combination therapy (ACT) is a key component of malaria control programmes. To maximize efficacy of ACT and ensure adequate treatment outcomes, patient and caregiver adherence to treatment guidelines is essential. This review summarizes the current evidence base on ACT adherence, including definitions, measurement methods, and associated factors. A systematic search of the published literature was undertaken in November 2012 and updated in April 2013. Bibliographies of manuscripts were also searched and additional references identified. Studies were included if they involved at least one form of ACT and reported an adherence measurement. The search yielded 1,412 records, 37 of which were found to measure adherence to ACT. Methods to measure adherence focused on self-report, pill counts and bioassays with varying definitions for adherence. Most studies only reported whether medication regimens were completed, but did not assess how the treatment was taken by the patient (i.e. timing, frequency and dose). Adherence data were available for four different ACT formulations: artemether-lumefantrine (AL) (range 39-100%), amodiaquine plus artesunate (AQ + AS) (range 48-94%), artesunate plus sulphadoxine-pyrimethamine (AS + SP) (range 39-75%) and artesunate plus mefloquine (AS + MQ) (range 77-95%). Association between demographic factors, such as age, gender, education and socio-economic status and adherence to ACT regimens was not consistent. Some evidence of positive association between adherence and patient age, caregiver education levels, drug preferences, health worker instructions, patient/caregiver knowledge and drug packaging were also observed. This review highlights the weak evidence base on ACT adherence. Results suggest that ACT adherence levels varied substantially between study populations, but comparison between studies was challenging due to differences in study design, definitions, and methods used to measure adherence. Standardising methodologies for both self-report and bioassays used for evaluating adherence of different formulations across diverse contexts would improve the evidence base on ACT adherence and effectiveness; namely, specific and measurable definitions for adherence are needed for both methodologies. Additionally, further studies of the individual factors and barriers associated with non-adherence to ACT are needed in order to make informed policy choices and to improve the delivery of effective malaria treatment
DIAGNOSTIC PERFORMANCE EVALUATION OF THE SD BIOLINE MALARIA ANTIGEN AG PF/PAN TEST (05FK60) IN A MALARIA ENDEMIC AREA OF SOUTHERN ETHIOPIA
Longitudinal survey of malaria morbidity over 10 years in Saharevo (Madagascar): further lessons for strengthening malaria control
<p>Abstract</p> <p>Background</p> <p>Madagascar has been known for having bio-geo-ecological diversity which is reflected by a complex malaria epidemiology ranging from hyperendemic to malaria-free areas. Malaria-related attacks and infection are frequently recorded both in children and adults living in areas of low malaria transmission. To integrate this variability in the national malaria control policy, extensive epidemiological studies are required to up-date previous records and adjust strategies.</p> <p>Methods</p> <p>A longitudinal malaria survey was conducted from July 1996 to June 2005 among an average cohort of 214 villagers in Saharevo, located at 900 m above the sea. Saharevo is a typical eastern foothill site at the junction between a costal wet tropical area (equatorial malaria pattern) and a drier high-altitude area (low malaria transmission).</p> <p>Results</p> <p>Passive and active malaria detection revealed that malaria transmission in Saharevo follows an abrupt seasonal variation. Interestingly, malaria was confirmed in 45% (1,271/2,794) of malaria-presumed fevers seen at the health centre. All four <it>Plasmodia </it>that infect humans were also found: <it>Plasmodium falciparum</it>; <it>Plasmodium vivax</it>, <it>Plasmodium malariae </it>and <it>Plasmodium ovale</it>. Half of the malaria-presumed fevers could be confirmed over the season with the highest malaria transmission level, although less than a quarter in lower transmission time, highlighting the importance of diagnosis prior to treatment intake. <it>P. falciparum </it>malaria has been predominant (98%). The high prevalence of <it>P. falciparum </it>malaria affects more particularly under 10 years old children in both symptomatic and asymptomatic contexts. Children between two and four years of age experienced an average of 2.6 malaria attacks with <it>P. falciparum </it>per annum. Moreover, estimated incidence of <it>P. falciparum </it>malaria tends to show that half of the attacks (15 attacks) risk to occur during the first 10 years of life for a 60-year-old adult who would have experienced 32 malaria attacks.</p> <p>Conclusion</p> <p>The incidence of malaria decreased slightly with age but remained important among children and adults in Saharevo. These results support that a premunition against malaria is slowly acquired until adolescence. However, this claims for a weak premunition among villagers in Saharevo and by extension in the whole eastern foothill area of Madagascar. While the Malagasy government turns towards malaria elimination plans nowadays, choices and expectations to up-date and adapt malaria control strategies in the foothill areas are discussed in this paper.</p
Assessment of the efficacy of antimalarial drugs recommended by the National Malaria Control Programme in Madagascar: Up-dated baseline data from randomized and multi-site clinical trials
<p>Abstract</p> <p>Background</p> <p>In order to improve the monitoring of the antimalarial drug resistance in Madagascar, a new national network based on eight sentinel sites was set up. In 2006/2007, a multi-site randomized clinical trial was designed to assess the therapeutic efficacy of chloroquine (CQ), sulphadoxine-pyrimethamine (SP), amodiaquine (AQ) and artesunate plus amodiaquine combination (ASAQ), the antimalarial therapies recommended by the National Malaria Control Programme (NMCP).</p> <p>Methods</p> <p>Children between six months and 15 years of age, with uncomplicated falciparum malaria, were enrolled. Primary endpoints were the day-14 and day-28 risks of parasitological failure, either unadjusted or adjusted by genotyping. Risks of clinical and parasitological treatment failure after adjustment by genotyping were estimated using Kaplan-Meier survival analysis. Secondary outcomes included fever clearance, parasite clearance, change in haemoglobin levels between Day 0 and the last day of follow-up, and the incidence of adverse events.</p> <p>Results</p> <p>A total of 1,347 of 1,434 patients (93.9%) completed treatment and follow-up to day 28. All treatment regimens, except for the chloroquine (CQ) treatment group, resulted in clinical cure rates above 97.6% by day-14 and 96.7% by day-28 (adjusted by genotyping). Parasite and fever clearance was more rapid with artesunate plus amodiaquine, but the extent of haematological recovery on day-28 did not differ significantly between the four groups. No severe side-effects were observed during the follow-up period.</p> <p>Conclusion</p> <p>These findings (i) constitute an up-dated baseline data on the efficacy of antimalarial drugs recommended by the NMCP, (ii) show that antimalarial drug resistance remains low in Madagascar, except for CQ, compared to the bordering countries in the Indian Ocean region such as the Comoros Archipelago and (iii) support the current policy of ASAQ as the first-line treatment in uncomplicated falciparum malaria.</p
In vitro susceptibility to pyrimethamine of DHFR I164L single mutant Plasmodium falciparum
<p>Abstract</p> <p>Background</p> <p>Recently, <it>Plasmodium falciparum </it>parasites bearing <it>Pfdhfr </it>I164L single mutation were found in Madagascar. These new mutants may challenge the use of antifolates for the intermittent preventive treatment of malaria during pregnancy (IPTp). Assays with transgenic bacteria suggested that I164L parasites have a wild-type phenotype for pyrimethamine but it had to be confirmed by testing the parasites themselves.</p> <p>Methods</p> <p>Thirty <it>Plasmodium falciparum </it>clinical isolates were collected in 2008 in the south-east of Madagascar. A part of <it>Pfdhfr </it>gene encompassing codons 6 to 206 was amplified by PCR and the determination of the presence of single nucleotide polymorphisms was performed by DNA sequencing. The multiplicity of infection was estimated by using an allelic family-specific nested PCR. Isolates that appeared monoclonal were submitted to culture adaptation. Determination of IC<sub>50s </sub>to pyrimethamine was performed on adapted isolates.</p> <p>Results</p> <p>Four different <it>Pfdhfr </it>alleles were found: the 164L single mutant-type (N = 13), the wild-type (N = 7), the triple mutant-type 51I/59R/108N (N = 9) and the double mutant-type 108N/164L (N = 1). Eleven out 30 (36.7%) of <it>P. falciparum </it>isolates were considered as monoclonal infection. Among them, five isolates were successfully adapted in culture and tested for pyrimethamine <it>in vitro </it>susceptibility. The wild-type allele was the most susceptible with a 50% inhibitory concentration (IC<sub>50</sub>) < 10 nM. The geometric mean of IC<sub>50 </sub>of the three I164L mutant isolates was 6-fold higher than the wild-type with 61.3 nM (SD = 3.2 nM, CI95%: 53.9-69.7 nM). These values remained largely below the IC<sub>50 </sub>of the triple mutant parasite (13,804 nM).</p> <p>Conclusion</p> <p>The IC<sub>50</sub>s of the I164L mutant isolates were significantly higher than those of the wild-type (6-fold higher) and close from those usually reported for simple mutants S108N (roughly10-fold higher than wild type). Given the observed values, the determination of IC<sub>50</sub>s directly on parasites did not confirm what has been found on transgenic bacteria. The prevalence increase of the <it>Pfdhfr </it>I164L single mutant parasite since 2006 could be explained by the selective advantage of this allele under sulphadoxine-pyrimethamine pressure. The emergence of highly resistant alleles should be considered in the future, in particular because an unexpected double mutant-type allele S108N/I164L has been already detected.</p
Plasmodium vivax dhfr and dhps mutations in isolates from Madagascar and therapeutic response to sulphadoxine-pyrimethamine
<p>Abstract</p> <p>Background</p> <p>Four of five <it>Plasmodium </it>species infecting humans are present in Madagascar. <it>Plasmodium vivax </it>remains the second most prevalent species, but is understudied. No data is available on its susceptibility to sulphadoxine-pyrimethamine, the drug recommended for intermittent preventive treatment during pregnancy. In this study, the prevalence of <it>P. vivax </it>infection and the polymorphisms in the <it>pvdhfr </it>and <it>pvdhps </it>genes were investigated. The correlation between these polymorphisms and clinical and parasitological responses was also investigated in <it>P. vivax</it>-infected patients.</p> <p>Methods</p> <p><it>Plasmodium vivax </it>clinical isolates were collected in eight sentinel sites from the four major epidemiological areas for malaria across Madagascar in 2006/2007. <it>Pvdhfr </it>and <it>pvdhps </it>genes were sequenced for polymorphism analysis. The therapeutic efficacy of SP in <it>P. vivax </it>infections was assessed in Tsiroanomandidy, in the foothill of the central highlands. An intention-to-treat analysis of treatment outcome was carried out.</p> <p>Results</p> <p>A total of 159 <it>P. vivax </it>samples were sequenced in the <it>pvdhfr/pvdhps </it>genes. Mutant-types in <it>pvdhfr </it>gene were found in 71% of samples, and in <it>pvdhps </it>gene in 16% of samples. Six non-synonymous mutations were identified in <it>pvdhfr</it>, including two novel mutations at codons 21 and 130. For <it>pvdhps</it>, beside the known mutation at codon 383, a new one was found at codon 422. For the two genes, different combinations were ranged from wild-type to quadruple mutant-type. Among the 16 patients enrolled in the sulphadoxine-pyrimethamine clinical trial (28 days of follow-up) and after adjustment by genotyping, 3 (19%, 95% CI: 5%–43%) of them were classified as treatment failure and were <it>pvdhfr </it>58R/117N double mutant carriers with or without the <it>pvdhps </it>383G mutation.</p> <p>Conclusion</p> <p>This study highlights (i) that genotyping in the <it>pvdhfr </it>and <it>pvdhps </it>genes remains a useful tool to monitor the emergence and the spread of <it>P. vivax </it>sulphadoxine-pyrimethamine resistant in order to improve the national antimalarial drug policy, (ii) the issue of using sulphadoxine-pyrimethamine as a monotherapy for intermittent preventive treatment of pregnant women or children.</p
Multiple causes of an unexpected malaria outbreak in a high-transmission area in Madagascar
BACKGROUND: The malaria burden in Madagascar dropped down last decade, largely due to scale-up of control measures. Nevertheless, a significant rise of malaria cases occurred in 2011–2012 in two regions of the rainy South-Eastern Madagascar, where malaria is considered as mesoendemic and the population is supposed to be protected by its acquired immunity against Plasmodium. A multidisciplinary investigation was conducted in order to identify the causes of the outbreak. METHODS: In March 2012, a cross-sectional study was conducted in 20 randomly selected clusters, involving the rapid diagnostic testing of all ≥6 month-old members of households and a questionnaire about socio-demographic data and exposure to malaria control interventions. Changes in environmental conditions were evaluated by qualitative interview of local authorities, climatic conditions were evaluated by remote-sensing, and stock outs of malaria supplies in health facilities were evaluated by quantitative means. Two long-lasting insecticidal nets (LLINs) were sampled in each cluster in order to evaluate their condition and the remanence of their insecticidal activity. The entomological investigation also encompassed the collection Anopheles vectors in two sites, and the measure of their sensitivity to deltamethrin. RESULTS: The cross-sectional survey included 1615 members of 440 households. The mean Plasmodium infection rate was 25.6 % and the mean bed net use on the day before survey was 71.1 %. The prevalence of Plasmodium infections was higher in 6–14 year-old children (odds ratio (OR) 7.73 [95 % CI 3.58–16.68]), in rural areas (OR 6.25 [4.46–8.76]), in poorest socio-economic tercile (OR 1.54 [1.13–2.08]), and it was lower in individuals sleeping regularly under the bed net (OR 0.51 [0.32–0.82]). Stock outs of anti-malarial drugs in the last 6 months have been reported in two third of health facilities. Rainfalls were increased as compared with the three previous rainy seasons. Vectors collected were sensitive to pyrethroids. Two years after distribution, nearly all LLINs collected showed a loss of physical integrity and insecticide activity, CONCLUSIONS: Increased rainfall, decreasing use and reduced insecticide activity of long-lasting insecticide-treated nets, and drug shortages may have been responsible for, or contributed to, the outbreak observed in South-Eastern Madagascar in 2011–2012. Control interventions for malaria elimination must be sustained at the risk of triggering harmful epidemics, even in zones of high transmission
Evaluation of the rapid diagnostic test SDFK40 (Pf-pLDH/pan-pLDH) for the diagnosis of malaria in a non-endemic setting
<p>Abstract</p> <p>Background</p> <p>The present study evaluated the SD Bioline Malaria Ag 05FK40 (SDFK40), a three-band RDT detecting <it>Plasmodium falciparum</it>-specific parasite lactate dehydrogenase (Pf-pLDH) and pan <it>Plasmodium</it>-specific pLDH (pan-pLDH), in a reference setting.</p> <p>Methods</p> <p>The SDFK40 was retrospectively and prospectively tested against a panel of stored (n = 341) and fresh (n = 181) whole blood samples obtained in international travelers suspected of malaria, representing the four <it>Plasmodium </it>species as well as <it>Plasmodium </it>negative samples, and compared to microscopy and PCR results. The prospective panel was run together with OptiMAL (Pf-pLDH/pan-pLDH) and SDFK60 (histidine-rich protein-2 (HRP-2)/pan-pLDH).</p> <p>Results</p> <p>Overall sensitivities for <it>P. falciparum </it>tested retrospectively and prospectively were 67.9% and 78.8%, reaching 100% and 94.6% at parasite densities >1,000/μl. Sensitivity at parasite densities ≤ 100/μl was 9.1%. Overall sensitivities for <it>Plasmodium vivax </it>and <it>Plasmodium ovale </it>were 86.7% and 80.0% (retrospectively) and 92.9% and 76.9% (prospectively), reaching 94.7% for both species (retrospective panel) at parasite densities >500/μl. Sensitivity for <it>Plasmodium malariae </it>was 21.4%. Species mismatch occurred in 0.7% of samples (3/411) and was limited to non-<it>falciparum </it>species erroneously identified as <it>P. falciparum</it>. None of the <it>Plasmodium </it>negative samples in the retrospective panel reacted positive. Compared to OptiMAL and SDFK60, SDFK40 showed lower sensitivities for <it>P. falciparum</it>, but better detection of <it>P. ovale</it>. Inter-observer agreement and test reproducibility were excellent, but lot-to-lot variability was observed for pan-pLDH results in case of <it>P. falciparum</it>.</p> <p>Conclusion</p> <p>SDFK40 performance was poor at low (≤ 100/μl) parasite densities, precluding its use as the only diagnostic tool for malaria diagnosis. SDFK40 performed excellent for <it>P. falciparum </it>samples at high (>1,000/μl) parasite densities as well as for detection of <it>P. vivax </it>and <it>P. ovale </it>at parasite densities >500/μl.</p
- …
