3,530 research outputs found
Methods and costs of preventing cadmium emissions. EIR 6636 EN Vol. III. Environment and quality of life
Youth Unemployment, Ageing and Regional Welfare: The Regional Labour Market Policy Response to Ageing in Sweden
The aim of this paper is to discuss the regional labour market policy response to demographic ageing in Sweden and its consequences on the labour supply of young adults. Regions with ageing problems already experience significant problems at the labour market. The overall conclusion is that labour market policies in Sweden addressing the consequences of ageing fail to include young adults and the policies do not address regional heterogeneity regarding e.g. ageing and youth unemployment
Structured random measurements in signal processing
Compressed sensing and its extensions have recently triggered interest in
randomized signal acquisition. A key finding is that random measurements
provide sparse signal reconstruction guarantees for efficient and stable
algorithms with a minimal number of samples. While this was first shown for
(unstructured) Gaussian random measurement matrices, applications require
certain structure of the measurements leading to structured random measurement
matrices. Near optimal recovery guarantees for such structured measurements
have been developed over the past years in a variety of contexts. This article
surveys the theory in three scenarios: compressed sensing (sparse recovery),
low rank matrix recovery, and phaseless estimation. The random measurement
matrices to be considered include random partial Fourier matrices, partial
random circulant matrices (subsampled convolutions), matrix completion, and
phase estimation from magnitudes of Fourier type measurements. The article
concludes with a brief discussion of the mathematical techniques for the
analysis of such structured random measurements.Comment: 22 pages, 2 figure
Low rank tensor recovery via iterative hard thresholding
We study extensions of compressive sensing and low rank matrix recovery
(matrix completion) to the recovery of low rank tensors of higher order from a
small number of linear measurements. While the theoretical understanding of low
rank matrix recovery is already well-developed, only few contributions on the
low rank tensor recovery problem are available so far. In this paper, we
introduce versions of the iterative hard thresholding algorithm for several
tensor decompositions, namely the higher order singular value decomposition
(HOSVD), the tensor train format (TT), and the general hierarchical Tucker
decomposition (HT). We provide a partial convergence result for these
algorithms which is based on a variant of the restricted isometry property of
the measurement operator adapted to the tensor decomposition at hand that
induces a corresponding notion of tensor rank. We show that subgaussian
measurement ensembles satisfy the tensor restricted isometry property with high
probability under a certain almost optimal bound on the number of measurements
which depends on the corresponding tensor format. These bounds are extended to
partial Fourier maps combined with random sign flips of the tensor entries.
Finally, we illustrate the performance of iterative hard thresholding methods
for tensor recovery via numerical experiments where we consider recovery from
Gaussian random measurements, tensor completion (recovery of missing entries),
and Fourier measurements for third order tensors.Comment: 34 page
- …
