262 research outputs found
INSL3 as a biomarker of Leydig cell functionality
Insulin-like factor 3 (INSL3) is a small peptide hormone made and secreted uniquely by mature Leydig cells in the testes of all mammals. Importantly, this expression and secretion appears to be constitutive and therefore reflects the differentiation status and number of the Leydig cells present, differing thereby from testosterone, which is acutely and homeostatically regulated by the hormones of the hypothalamic-pituitary-gonadal axis. As a consequence, the measurement of INSL3 either as mRNA in the testis or as secreted peptide circulating in the blood provides an excellent assessment of Leydig cell differentiation, for example, during fetal development, puberty, or aging or following exposure to endocrine-disrupting agents. Whereas INSL3 is proving increasingly useful as a biomarker for testis status, less is known about its functions, particularly in the adult male. Current evidence points to autocrine, paracrine, and endocrine roles, acting through the G-protein-coupled receptor called RXFP2, although more research is required to characterize these functions in detail
Insulin-like factor 3 and the HPG axis in the male
The hypothalamic–pituitary–gonadal (HPG) axis comprises pulsatile GnRH from the hypothalamus impacting on the anterior pituitary to induce expression and release of both LH and FSH into the circulation. These in turn stimulate receptors on testicular Leydig and Sertoli cells, respectively, to promote steroidogenesis and spermatogenesis. Both Leydig and Sertoli cells exhibit negative feedback to the pituitary and/or hypothalamus via their products testosterone and inhibin B, respectively, thereby allowing tight regulation of the HPG axis. In particular, LH exerts both acute control on Leydig cells by influencing steroidogenic enzyme activity, as well as chronic control by impacting on Leydig cell differentiation and gene expression. Insulin-like peptide 3 (INSL3) represents an additional and different endpoint of the HPG axis. This Leydig cell hormone interacts with specific receptors, called RXFP2, on Leydig cells themselves to modulate steroidogenesis, and on male germ cells, probably to synergize with androgen-dependent Sertoli cell products to support spermatogenesis. Unlike testosterone, INSL3 is not acutely regulated by the HPG axis, but is a constitutive product of Leydig cells, which reflects their number and/or differentiation status and their ability therefore to produce various factors including steroids, together this is referred to as Leydig cell functional capacity. Because INSL3 is not subject to the acute episodic fluctuations inherent in the HPG axis itself, it serves as an excellent marker for Leydig cell differentiation and functional capacity, as in puberty, or in monitoring the treatment of hypogonadal patients, and at the same time buffering the HPG output
Theca cell INSL3 and steroids together orchestrate the growing bovine antral follicle
Insulin-like peptide 3 (INSL3) and its specific receptor RXFP2 are both expressed by theca interna cells of the growing antral follicle where they form an essential regulatory element in the production of the steroid precursor androstenedione. Using primary cultures of bovine theca cells from the mid follicular phase together with steroid agonists and antagonists we have examined how ovarian steroids modulate INSL3 expression. Transcript analysis shows that these cells express estrogen receptors α and β, androgen and progesterone receptors, besides the orphan nuclear receptors SF1 and nur77. Whereas, exogenous androgens have little or no effect, the androgen antagonist bicalutamide stimulates INSL3 production. In contrast, estrogen receptor agonists, as also progesterone, are stimulatory. Importantly, estrogen receptor signaling is convergent with the protein kinase A signaling pathway activated by LH, such that the estrogen receptor antagonist can inhibit the mild stimulatory effect of LH, and vice versa the PKA antagonist H89 blocks stimulation by estradiol. A significant finding is that the major steroid metabolite androstenedione appears to act predominantly as an estrogen and not an androgen in this system. Transfection of INSL3 gene promoter-reporter constructs together with various steroid receptor expression plasmids supports these findings and shows that steroid action uses non-classical pathways not requiring canonical steroid-responsive elements in the proximal promoter region. Together, the results indicate that increasing estrogens in the follicular phase stimulate a feedforward loop driving INSL3 signaling and thereby promoting steroidogenesis in the growing antral follicle until the LH surge which effectively switches off INSL3 expression
Infrared Avalanche Photodiode Detectors
This study presents on the design, fabrication and characteristics of HgCdTe mid-wave infrared avalanche photodiode (MWIR APD). The gain of 800 at - 8 V bias is measured in n+-ν-p+ detector array with pitch size of 30 μm. The gain independent bandwidth of 6 MHz is achieved in the fabricated device. This paper also covers the status of HgCdTe and III-V material based IR-APD technology. These APDs having high internal gain and bandwidth are suitable for the detection of attenuated optical signals such as in the battle field conditions/long range imaging in defence and space applications. It provides a combined solution for both detection and amplification if the detector receives a very weak optical signal. HgCdTe based APDs provide high avalanche gain with low excess noise, high quantum efficiency, low dark current and fast response time
HgCdTe e-avalanche photodiode detector arrays
Initial results on the MWIR e-APD detector arrays with 30 μm pitch fabricated on LPE grown compositionally graded p-HgCdTe epilayers are presented. High dynamic resistance times active area (R0A) product 2 × 106 Ω-cm2, low dark current density 4 nA/cm2 and high gain 5500 at -8 V were achieved in the n+-υ-p+ HgCdTe e-APD at 80 K. LPE based HgCdTe e-APD development makes this technology amenable for adoption in the foundries established for the conventional HgCdTe photovoltaic detector arrays without any additional investment
Perfluorooctane sulfonate concentrations in amniotic fluid, biomarkers of fetal Leydig cell function, and cryptorchidism and hypospadias in Danish boys (1980–1996)
Background: Exposure to perfluorooctane sulfonate (PFOS) may potentially disturb fetal Leydig cell hormone production and male genital development.
Objectives: We aimed to study the associations between levels of amniotic fluid PFOS, fetal steroid hormone, and insulin-like factor 3 (INSL3) and the prevalence of cryptorchidism and hypospadias.
Methods: Using the Danish National Patient Registry, we selected 270 cryptorchidism cases,75 hypospadias cases, and 300 controls with stored maternal amniotic fluid samples available in a Danish pregnancy-screening biobank (1980–1996). We used mass spectrometry to measure PFOS in amniotic fluid from 645 persons and steroid hormones in samples from 545 persons. INSL3 was measured by immunoassay from 475 persons. Associations between PFOS concentration in amniotic fluid, hormone levels, and genital malformations were assessed by confounder-adjusted linear and logistic regression.
Results: The highest tertile of PFOS exposure (> 1.4 ng/mL) in amniotic fluid was associated with a 40% (95% CI: –69, –11%) lower INSL3 level and an 18% (95% CI: 7, 29%) higher testosterone level compared with the lowest tertile (< 0.8 ng/mL). Amniotic fluid PFOS concentration was not associated with cryptorchidism or hypospadias.
Conclusions: Environmental PFOS exposure was associated with steroid hormone and INSL3 concentrations in amniotic fluid, but was not associated with cryptorchidism or hypospadias in our study population. Additional studies are needed to determine whether associations with fetal hormone levels may have long-term implications for reproductive health
The SPLIT Research Agenda 2013
This review focuses on active clinical research in pediatric liver transplantation with special emphasis on areas that could benefit from studies utilizing the SPLIT infrastructure and data repository. Ideas were solicited by members of the SPLIT Research Committee and sections were drafted by members of the committee with expertise in those given areas. This review is intended to highlight priorities for clinical research that could successfully be conducted through the SPLIT collaborative and would have significant impact in pediatric liver transplantation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98814/1/petr12090.pd
Insulin-like factor 3 as a monitor of endocrine disruption
Insulin-like factor 3 (INSL3) is generated and secreted by differentiated interstitial Leydig cells of the testes in both fetal and adult males of all mammalian species so far analyzed. All evidence to date suggests that it is produced constitutively, independently of acute regulation by the hypothalamo-pituitary–gonadal (HPG) axis, in amounts which reflect the numbers and differentiation status of the Leydig cells. This Leydig cell functional capacity is otherwise monitored only by androgen output, which, however, is massively confounded by acute regulation from the HPG axis and other factors leading to substantial and irregular short-term variation. Leydig cells are a primary target of endocrine-disrupting agents in the context of the testicular dysgenesis syndrome in the fetal male, as well as in the adult. In the male fetus, INSL3 is responsible for the first phase of testicular descent, and hence is directly linked to the etiology of cryptorchidism. In this study, by measuring INSL3 production, for example, during fetal life via amniotic fluid, or as secretions from fetal testis explants, or in adult peripheral blood, we and others have shown that INSL3 represents a useful quantitative and sensitive endpoint for assessing the impact of endocrine-disrupting agents and their mechanisms of action
Cryptorchidism in the orl rat is associated with muscle patterning defects in the fetal gubernaculum and altered hormonal signaling
Cryptorchidism, or undescended testis, is a common male genital anomaly of unclear etiology. Hormonal stimulation of the developing fetal gubernaculum by testicular androgens and insulin-like 3 (INSL3) is required for testicular descent. In studies of the orl fetal rat, one of several reported strains with inherited cryptorchidism, we studied hormone levels, gene expression in intact and hormone-stimulated gubernaculum, and imaging of the developing cremaster muscle facilitated by a tissue clearing protocol to further characterize development of the orl gubernaculum. Abnormal localization of the inverted gubernaculum was visible soon after birth. In the orl fetus, testicular testosterone, gubernacular androgen-responsive transcript levels, and muscle-specific gene expression were reduced. However, the in vitro transcriptional response of the orl gubernaculum to androgen was largely comparable to wild type (wt). In contrast, increases in serum INSL3, gubernacular INSL3-responsive transcript levels, expression of the INSL3 receptor, Rxfp2, and the response of the orl gubernaculum to INSL3 in vitro all suggest enhanced activation of INSL3/RXFP2 signaling in the orl rat. However, DNA sequence analysis did not identify functional variants in orl Insl3. Finally, combined analysis of the present and previous studies of the orl transcriptome confirmed altered expression of muscle and cellular motility genes, and whole mount imaging revealed aberrant muscle pattern formation in the orl fetal gubernaculum. The nature and prevalence of developmental muscle defects in the orl gubernaculum are consistent with the cryptorchid phenotype in this strain. These data suggest impaired androgen and enhanced INSL3 signaling in the orl fetus accompanied by defective cremaster muscle development
Neohormones in milk
Neohormone systems evolved specifically to regulate those mammalian traits, such as internal fertilization, pregnancy and lactation, which have proved to be central to the success, environmental independence, and adaptability of mammals as a vertebrate group. Neohormones such as oxytocin or relaxin are not only involved in the regulation of mammary gland development and function, but are also significant components of milk itself. Particularly for the latter hormone, it has been shown for the pig that relaxin in the first milk is taken up by the gastrointestinal tract of the offspring, enters the neonatal circulation and can have specific physiological and epigenetic effects on target organs such as the female reproductive system. Nevertheless, there are large gaps in our knowledge and understanding of such lactocrine systems especially in regard to other neohormones, species, and neonatal organ systems
- …
