188 research outputs found

    Estimation of carbon sequestration under MGNREGA: achievement and potential in India

    Get PDF
    The Mahatma Gandhi National Rural Employment Guarantee Act (MGNREGA) aims at enhancing the livelihood security of people in rural areas of India by guaranteeing 100 days of wage-employment in a financial year to a rural household whose adult members volunteer to work. The Act also seeks to create durable assets to augment land and water resources, improve rural connectivity and strengthen the livelihood resource base of the rural poor. The Mahatma Gandhi National Rural Employment Guarantee Scheme (MGNREGS) works or activities are largely focused on land and water resources, which include: water harvesting and conservation, soil conservation and protection, irrigation provisioning and improvement, renovation of traditional water bodies, land development and drought proofing. These MGNREGS “Works” are indeed “activities” implemented. These Natural Resource Management (NRM) related Works or activities have the potential to generate environmental benefits such as ground water recharge, soil, water and biodiversity conservation, sustaining food production, halting land degradation and building resilience to current climate risks such as moisture stress, delayed rainfall, droughts and floods (Tiwari et al., 2011; Esteves et al., 2013, MoRD, 2012). Apart from reducing vulnerability to climate variability and change (Esteves et al., 2013), MGNREGA-NRM activities have the potential to sequester carbon in soil and trees under different activities such as: land development, soil and water conservation, enhanced irrigation and water availability activities leading to increased tree growth, crop biomass production and soil carbon enhancement. Limited evidence is available on the actual or potential impact of MGNREGA programme on carbon sequestration in mitigating the climate change. Given the scale of the programme (total investment during 2017-18 being Rs. 48,000 crores = US$ 7 billion) and its focus on natural resources, it is important to assess the carbon sequestration potential, as a co-benefit, from MGNREGA. The present study aims to assess the carbon sequestration, as a co-benefit, achieved by the programme and its future potential to deliver climate mitigation co-benefits and in meeting one of the goals and targets of INDC of India, of sequestering 2.5 to 3.0 billion tonnes of CO2 by 2030 through increasing forest and tree cover. Some MGNREGA activities in some locations could lead to decline in carbon stocks, especially Soil Organic Carbon (SOC). Thus, in this report carbon sequestration or stock change resulting from implementation of MGNREGA works is estimated. MGNREGA programme includes broadly four categories of works that encompass both NRM and non-NRM works. NRM works largely dominate the MGNREGA work implementation in India. NRM activities or works dominated by accounting for about 55% of expenditure in 2014 to about 60% during 2018. This study is focused only on NRM works which have implications for biomass and soil carbon stocks

    Contribution of spatially explicit models to climate change adaptation and mitigation plans for a priority forest habitat

    Get PDF
    Climate change will impact forest ecosystems, their biodiversity and the livelihoods they sustain. Several adaptation and mitigation strategies to counteract climate change impacts have been proposed for these ecosystems. However, effective implementation of such strategies requires a clear understanding of how climate change will influence the future distribution of forest ecosystems. This study uses maximum entropy modelling (MaxEnt) to predict environmentally suitable areas for cork oak (Quercus suber) woodlands, a socio-economically important forest ecosystem protected by the European Union Habitats Directive. Specifically, we use two climate change scenarios to predict changes in environmental suitability across the entire geographical range of the cork oak and in areas where stands were recently established. Up to 40 % of current environmentally suitable areas for cork oak may be lost by 2070, mainly in northern Africa and southern Iberian Peninsula. Almost 90 % of new cork oak stands are predicted to lose suitability by the end of the century, but future plantations can take advantage of increasing suitability in northern Iberian Peninsula and France. The predicted impacts cross-country borders, showing that a multinational strategy, will be required for cork oak woodland adaptation to climate change. Such a strategy must be regionally adjusted, featuring the protection of refugia sites in southern areas and stimulating sustainable forest management in areas that will keep long-term suitability. Afforestation efforts should also be promoted but must consider environmental suitability and land competition issues

    Forest carbon stocks and fluxes in physiographic zones of India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reducing carbon Emissions from Deforestation and Degradation (REDD+) is of central importance to combat climate change. Foremost among the challenges is quantifying nation's carbon emissions from deforestation and degradation, which requires information on forest carbon storage. Here we estimated carbon storage in India's forest biomass for the years 2003, 2005 and 2007 and the net flux caused by deforestation and degradation, between two assessment periods i.e., Assessment Period first (ASP I), 2003-2005 and Assessment Period second (ASP II), 2005-2007.</p> <p>Results</p> <p>The total estimated carbon stock in India's forest biomass varied from 3325 to 3161 Mt during the years 2003 to 2007 respectively. There was a net flux of 372 Mt of CO<sub>2 </sub>in ASP I and 288 Mt of CO<sub>2 </sub>in ASP II, with an annual emission of 186 and 114 Mt of CO<sub>2 </sub>respectively. The carbon stock in India's forest biomass decreased continuously from 2003 onwards, despite slight increase in forest cover. The rate of carbon loss from the forest biomass in ASP II has dropped by 38.27% compared to ASP I.</p> <p>Conclusion</p> <p>With the Copenhagen Accord, India along with other BASIC countries China, Brazil and South Africa is voluntarily going to cut emissions. India will voluntary reduce the emission intensity of its GDP by 20-25% by 2020 in comparison to 2005 level, activities like REDD+ can provide a relatively cost-effective way of offsetting emissions, either by increasing the removals of greenhouse gases from the atmosphere by afforestation programmes, managing forests, or by reducing emissions through deforestation and degradation.</p

    Leveraging Rural Energy Investment for Parasitic Disease Control: Schistosome Ova Inactivation and Energy Co-Benefits of Anaerobic Digesters in Rural China

    Get PDF
    Cooking and heating remain the most energy intensive activities among the world's poor, and thus improved access to clean energies for these tasks has been highlighted as a key requirement of attaining the major objectives of the UN Millennium Development Goals. A move towards clean energy technologies such as biogas systems (which produce methane from human and animal waste) has the potential to provide immediate benefits for the control of neglected tropical diseases. Here, an assessment of the parasitic disease and energy benefits of biogas systems in Sichuan Province, China, is presented, highlighting how the public health sector can leverage the proliferation of rural energy projects for infectious disease control. ova) counted at the influent of two biogas systems were removed in the systems when adjusted for system residence time, an approximate 1-log removal attributable to sedimentation. Combined, these inactivation/removal processes underscore the promise of biogas infrastructure for reducing parasite contamination resulting from nightsoil use. When interviewed an average of 4 years after construction, villagers attributed large changes in fuel usage to the installation of biogas systems. Household coal usage decreased by 68%, wood by 74%, and crop waste by 6%. With reported energy savings valued at roughly 600 CNY per year, 2–3 years were required to recoup the capital costs of biogas systems. In villages without subsidies, no new biogas systems were implemented.Sustainable strategies that integrate rural energy needs and sanitation offer tremendous promise for long-term control of parasitic diseases, while simultaneously reducing energy costs and improving quality of life. Government policies can enhance the financial viability of such strategies by introducing fiscal incentives for joint sanitation/sustainable energy projects, along with their associated public outreach and education programs

    Complexities and Controversies in Himalayan Research: A Call for Collaboration and Rigor for Better Data

    Full text link
    The Himalaya range encompasses enormous variation in elevation, precipitation, biodiversity, and patterns of human livelihoods. These mountains modify the regional climate in complex ways; the ecosystem services they provide influence the lives of almost 1 billion people in 8 countries. However, our understanding of these ecosystems remains rudimentary. The 2007 Intergovernmental Panel on Climate Change report that erroneously predicted a date for widespread glacier loss exposed how little was known of Himalayan glaciers. Recent research shows how variably glaciers respond to climate change in different Himalayan regions. Alarmist theories are not new. In the 1980s, the Theory of Himalayan Degradation warned of complete forest loss and devastation of downstream areas, an eventuality that never occurred. More recently, the debate on hydroelectric construction appears driven by passions rather than science. Poor data, hasty conclusions, and bad science plague Himalayan research. Rigorous sampling, involvement of civil society in data collection, and long-term collaborative research involving institutions from across the Himalaya are essential to improve knowledge of this region

    Biomass gasification: Environmentally sound technology for decentralized power generation, a case study from India

    No full text
    This study aims at understanding the need for decentralized power generation systems and to explore the potential, feasibility and environmental implications of biomass gasifier-based electricity generation systems for village electrification. Electricity needs of villages are in the range of 5–20 kW depending on the size of the village. Decentralized power generation systems are desirable for low load village situations as the cost of power transmission lines is reduced and transmission and distribution losses are minimised. A biomass gasifier-based electricity generation system is one of the feasible options; the technology is readily available and has already been field tested. To meet the lighting and stationary power needs of 500,000 villages in India the land required is only 16 Mha compared to over 100 Mha of degraded land available for tree planting. In fact all the 95 Mt of woody biomass required for gasification could be obtained through biomass conservation programmes such as biogas and improved cook stoves. Thus dedication of land for energy plantations may not be required. A shift to a biomass gasifier-based power generation system leads to local benefits such as village self reliance, local employment and skill generation and promotion of in situ plant diversity plus global benefits like no net CO2 emission (as sustainable biomass harvests are possible) and a reduction in CO2 emissions (when used to substitute thermal power and diesel in irrigation pump sets)

    IPCC:accomplishments,controversies and challenges

    No full text
    The Intergovernmental Panel on Climate Change (IPCC) has successfully produced four assessment reports since 1990 along with a number of special reports and greenhouse gas inventory guidelines. It has very rigorous and robust procedures and guidelines for preparing the assessment reports largely based on synthesis of peer-reviewed and published scientific literature. IPCC has attracted controversy since the Second Assessment Report of 1995. The recent controversies surrounding the IPCC reports surfaced nearly two years after the release of the report in 2007, especially in the wake of the crucial Copenhagen Climate Convention. Many of the controversies can be traced to the use of information sourced from reports published outside the scientific journals such as reports of the World Wildlife Fund. It is true that there are a few errors in the IPCC reports, which may have escaped the multilayered rigorous review process. Many of the errors found in the main reports, which are over a thousand page each, have not been quoted in the crucial and most referred Summary for Policy Makers. IPCC may have to develop a more robust policy for sourcing literature published outside the scientific journals. The United Nations Secretary General has requested the prestigious Inter-Academy Council to review the IPCC principles, procedures and guidelines. The controversies raised in the recent past do not in any way change the main conclusions of the IPCC Assessment Report

    The Copenhagen Accord

    No full text
    corecore