289 research outputs found
BLAST: the Redshift Survey
The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has recently
surveyed ~8.7 deg^2 centered on GOODS-South at 250, 350, and 500 microns. In
Dye et al. (2009) we presented the catalogue of sources detected at 5-sigma in
at least one band in this field and the probable counterparts to these sources
in other wavebands. In this paper, we present the results of a redshift survey
in which we succeeded in measuring redshifts for 82 of these counterparts. The
spectra show that the BLAST counterparts are mostly star-forming galaxies but
not extreme ones when compared to those found in the Sloan Digital Sky Survey.
Roughly one quarter of the BLAST counterparts contain an active nucleus. We
have used the spectroscopic redshifts to carry out a test of the ability of
photometric redshift methods to estimate the redshifts of dusty galaxies,
showing that the standard methods work well even when a galaxy contains a large
amount of dust. We have also investigated the cases where there are two
possible counterparts to the BLAST source, finding that in at least half of
these there is evidence that the two galaxies are physically associated, either
because they are interacting or because they are in the same large-scale
structure. Finally, we have made the first direct measurements of the
luminosity function in the three BLAST bands. We find strong evolution out to
z=1, in the sense that there is a large increase in the space-density of the
most luminous galaxies. We have also investigated the evolution of the
dust-mass function, finding similar strong evolution in the space-density of
the galaxies with the largest dust masses, showing that the luminosity
evolution seen in many wavebands is associated with an increase in the
reservoir of interstellar matter in galaxies.Comment: Accepted for publication in the Astrophysical Journal. Maps and
associated results are available at http://blastexperiment.info
Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.
BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation
The potential of using the forensic profiles of Australian fraudulent identity documents to assist intelligence-led policing
The manufacture and distribution of fraudulent identity documents (IDs) is a pervasive and prolific crime problem, enabling the activities of organized crime networks and terrorist cells. As reactive policing methods are ill-equipped to handle the transversal and repetitive nature of document fraud, in 2012 Baechler et al. suggested a complementary method that uses the systematic profiling and comparison of fraudulent IDs to identify those produced by the same source. While this method has been successful in Europe, it is yet to be implemented worldwide, and there is currently little known about the Australian fraudulent document climate. In this pilot study, 43 fraudulent IDs from Sydney-based New South Wales police stations were examined. Adapting the method used in Europe, these documents were imaged, and their visual characteristics were extracted before being organized into an excel database and manually compared. The characteristics chosen are fundamentally linked to the manufacturing process, including the printing methods and replication of security features. Of the documents examined 88% were linked to at least one other document, and five series emerged. These results suggest that the Australian document market may be structured, and that there may be prolific offenders operating at its core, much like in Europe
De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures.
Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability
Gas Transfer Velocities in Small Forested Ponds
Inland waters actively exchange gases with the atmosphere, and the gas exchange rate informs system biogeochemistry, ecology, and global carbon budgets. Gas exchange in medium- to large-sized lakes is largely regulated by wind; yet less is known about processes regulating gas transfer in small ponds where wind speeds are low. In this study, we determined the gas transfer velocity, k600, in four small ( \u3c 250 m2 ) ponds by using a propane ( C3H8 ) gas injection. When estimated across 12 h periods, the average k600 ranged from 0.19 to 0.72 m d-1 across the ponds. We also estimated k600 at 2 to 3 h intervals during the day and evaluated the relationship with environmental conditions. The average daytime k600 ranged from 0.33 to 1.83 m d-1 across the ponds and was best predicted by wind speed and air or air-water temperature; however, the explanatory power was weak (R2 \u3c 0.27) with high variability within and among ponds. To compare our results to larger water bodies, we compiled direct measurements of k600 from 67 ponds and lakes worldwide. Our k600 estimates were within the range of estimates for other small ponds, and variability in k600 increased with lake size. However, the majority of studies were conducted on medium-sized lakes (0.01 to 1 km2), leaving small ponds and large lakes understudied. Overall, this study adds four small ponds to the existing body of research on gas transfer velocities from inland waters and highlights uncertainty in k600, with implications for calculating metabolism and carbon emissions in inland waters
Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease
Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.This work was supported by The National Institute for Health Research England (NIHR) for the NIHR BioResource – Rare Diseases project (grant number RG65966). The Moorfields Eye Hospital cohort of patients and clinical and imaging data were ascertained and collected with the support of grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital, National Health Service Foundation Trust, and UCL Institute of Ophthalmology, Moorfields Eye Hospital Special Trustees, Moorfields Eye Charity, the Foundation Fighting Blindness (USA), and Retinitis Pigmentosa Fighting Blindness. M.M. is a recipient of an FFB Career Development Award. E.M. is supported by UCLH/UCL NIHR Biomedical Research Centre. F.L.R. and D.G. are supported by Cambridge NIHR Biomedical Research Centre
Molecular Cloud Formation Behind Shock Waves
We examine the formation of molecular gas behind shocks in atomic gas using a
chemical/dynamical model, particular emphasis is given to constraints the
chemistry places on the dynamical evolution. The most important result of this
study is to stress the importance of shielding the molecular gas from the
destructive effects of UV radiation. For shock ram pressures comparable to or
exceeding typical local ISM pressures, self-shielding controls the formation
time of H2 but CO formation requires shielding of the interstellar radiation
field by dust grains. We find that the molecular hydrogen fractional abundance
can become significant well before CO forms. The timescale for (CO) molecular
cloud formation is not set by H2 formation, but rather by the timescale for
accumulating a sufficient column density or extinction, A_V > 0.7. The local
ratio of atomic to molecular gas (4:1), coupled with short estimates for cloud
lifetimes (3-5 Myr), suggests that the timescales for accumulating molecular
clouds from atomic material typically must be no longer than about 12-20 Myr.
Based on the shielding requirement, this implies that the typical product of
pre-shock density and velocity must be n*v > 20 cm^-3 km s^-1. Based on these
results we find that flow-driven formation of molecular clouds in the local
interstellar medium can occur sufficiently rapidly to account for observations.
We also provide detailed predictions of atomic and molecular emission and
absorption that track molecular cloud formation, with a view toward helping to
verify cloud formation by shock waves. Finally, we provide an analytic solution
for time-dependent H2 formation which may be of use in numerical hydrodynamic
calculations.Comment: 43 pages, 13 figures, accepted by ApJ main journa
Analysis of the association between spawning time QTL markers and the biannual spawning behavior in rainbow trout (Oncorhynchus mykiss)
The rainbow trout is a salmonid fish that occasionally exhibits broodstocks with biannual spawning behavior, a phenomenon known as a double annual reproductive cycle (DARC). Spawning time quantitative trait loci (SPT-QTLs) affect the time of the year that female rainbow trout spawn and may influence expression of the DARC trait. In this study, microsatellite markers linked and unlinked to SPT-QTLs were genotyped to investigate the underlying genetics of this trait. SPT-QTLs influenced the DARC trait since in two case-control comparisons three linked markers (OmyFGT12TUF, One3ASC and One19ASC) had significant levels of allelic frequency differentiation and marker-character association. Furthermore, alleles of One3ASC and One19ASC had significantly higher frequencies in populations that carried the DARC trait
Sex Determination in the Squalius alburnoides Complex: An Initial Characterization of Sex Cascade Elements in the Context of a Hybrid Polyploid Genome
BACKGROUND:Sex determination processes vary widely among different vertebrate taxa, but no group offers as much diversity for the study of the evolution of sex determination as teleost fish. However, the knowledge about sex determination gene cascades is scarce in this species-rich group and further difficulties arise when considering hybrid fish taxa, in which mechanisms exhibited by parental species are often disrupted. Even though hybridisation is frequent among teleosts, gene based approaches on sex determination have seldom been conducted in hybrid fish. The hybrid polyploid complex of Squalius alburnoides was used as a model to address this question. METHODOLOGY/PRINCIPAL FINDINGS:We have initiated the isolation and characterization of regulatory elements (dmrt1, wt1, dax1 and figla) potentially involved in sex determination in S. alburnoides and in the parental species S. pyrenaicus and analysed their expression patterns by in situ hybridisation. In adults, an overall conservation in the cellular localization of the gene transcripts was observed between the hybrids and parental species. Some novel features emerged, such as dmrt1 expression in adult ovaries, and the non-dimorphic expression of figla, an ovarian marker in other species, in gonads of both sexes in S. alburnoides and S. pyrenaicus. The potential contribution of each gene to the sex determination process was assessed based on the timing and location of expression. Dmrt1 and wt1 transcripts were found at early stages of male development in S. alburnoides and are most likely implicated in the process of gonad development. CONCLUSIONS/SIGNIFICANCE:For the first time in the study of this hybrid complex, it was possible to directly compare the gene expression patterns between the bisexual parental species and the various hybrid forms, for an extended set of genes. The contribution of these genes to gonad integrity maintenance and functionality is apparently unaltered in the hybrids, suggesting that no abrupt shifts in gene expression occurred as a result of hybridisation
- …
