3,208 research outputs found
Efficient laser-overdense plasma coupling via surface plasma waves and steady magnetic field generation
International audienceThe efficiency of laser overdense plasma coupling via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed over a wide range of laser pulse intensity from 10 15 to 10 20 W cm À2 lm 2 with electron density ranging from 25 to 100n c to describe the laser interaction with a grating target where a surface plasma wave excitation condition is fulfilled. The numerical studies confirm an efficient coupling with an enhancement of the laser absorption up to 75%. The simulations also show the presence of a localized, quasi-static magnetic field at the plasma surface. Two interaction regimes are identified for low (Ik 2 10 17 W cm À2 lm 2) laser pulse intensities. At " relativistic " laser intensity, steady magnetic fields as high as $580 MG lm/k 0 at 7 Â 10 19 W cm À2 lm 2 are obtained in the simulations
Optical properties of an ensemble of G-centers in silicon
We addressed the carrier dynamics in so-called G-centers in silicon
(consisting of substitutional-interstitial carbon pairs interacting with
interstitial silicons) obtained via ion implantation into a
silicon-on-insulator wafer. For this point defect in silicon emitting in the
telecommunication wavelength range, we unravel the recombination dynamics by
time-resolved photoluminescence spectroscopy. More specifically, we performed
detailed photoluminescence experiments as a function of excitation energy,
incident power, irradiation fluence and temperature in order to study the
impact of radiative and non-radiative recombination channels on the spectrum,
yield and lifetime of G-centers. The sharp line emitting at 969 meV (1280
nm) and the broad asymmetric sideband developing at lower energy share the same
recombination dynamics as shown by time-resolved experiments performed
selectively on each spectral component. This feature accounts for the common
origin of the two emission bands which are unambiguously attributed to the
zero-phonon line and to the corresponding phonon sideband. In the framework of
the Huang-Rhys theory with non-perturbative calculations, we reach an
estimation of 1.60.1 \angstrom for the spatial extension of the
electronic wave function in the G-center. The radiative recombination time
measured at low temperature lies in the 6 ns-range. The estimation of both
radiative and non-radiative recombination rates as a function of temperature
further demonstrate a constant radiative lifetime. Finally, although G-centers
are shallow levels in silicon, we find a value of the Debye-Waller factor
comparable to deep levels in wide-bandgap materials. Our results point out the
potential of G-centers as a solid-state light source to be integrated into
opto-electronic devices within a common silicon platform
Can we predict the duration of an interglacial?
Differences in the duration of interglacials have long been apparent in palaeoclimate records of the Late and Middle Pleistocene. However, a systematic evaluation of such differences has been hampered by the lack of a metric that can be applied consistently through time and by difficulties in separating the local from the global component in various proxies. This, in turn, means that a theoretical framework with predictive power for interglacial duration has remained elusive. Here we propose that the interval between the terminal oscillation of the bipolar seesaw and three thousand years (kyr) before its first major reactivation provides an estimate that approximates the length of the sea-level highstand, a measure of interglacial duration. We apply this concept to interglacials of the last 800 kyr by using a recently-constructed record of interhemispheric variability. The onset of interglacials occurs within 2 kyr of the boreal summer insolation maximum/precession minimum and is consistent with the canonical view of Milankovitch forcing pacing the broad timing of interglacials. Glacial inception always takes place when obliquity is decreasing and never after the obliquity minimum. The phasing of precession and obliquity appears to influence the persistence of interglacial conditions over one or two insolation peaks, leading to shorter (~ 13 kyr) and longer (~ 28 kyr) interglacials. Glacial inception occurs approximately 10 kyr after peak interglacial conditions in temperature and CO2, representing a characteristic timescale of interglacial decline. Second-order differences in duration may be a function of stochasticity in the climate system, or small variations in background climate state and the magnitude of feedbacks and mechanisms contributing to glacial inception, and as such, difficult to predict. On the other hand, the broad duration of an interglacial may be determined by the phasing of astronomical parameters and the history of insolation, rather than the instantaneous forcing strength at inception
Steady magnetic-field generation via surface-plasma-wave excitation
International audienceThe possibility of inducing a magnetic field via surface plasma-wave excitation is investigated with a simple nonrelativistic hydrodynamic model. A static magnetic field is predicted at the plasma surface, scaling with the square of the surface-wave field amplitude, and the influence of the electron plasma density is studied. In the case of resonant surface-wave excitation by laser this result can be applied to low intensities such that the electron quiver velocity in the field of the surface wave is less than its thermal velocity
Evidence of resonant surface wave excitation in the relativistic regime through measurements of proton acceleration from grating targets
The interaction of laser pulses with thin grating targets, having a periodic
groove at the irradiated surface, has been experimentally investigated.
Ultrahigh contrast () pulses allowed to demonstrate an enhanced
laser-target coupling for the first time in the relativistic regime of
ultra-high intensity >10^{19} \mbox{W/cm}^{2}. A maximum increase by a factor
of 2.5 of the cut-off energy of protons produced by Target Normal Sheath
Acceleration has been observed with respect to plane targets, around the
incidence angle expected for resonant excitation of surface waves. A
significant enhancement is also observed for small angles of incidence, out of
resonance.Comment: 5 pages, 5 figures, 2nd version implements final correction
The integral monodromy of hyperelliptic and trielliptic curves
We compute the \integ/\ell and \integ_\ell monodromy of every irreducible
component of the moduli spaces of hyperelliptic and trielliptic curves. In
particular, we provide a proof that the \integ/\ell monodromy of the moduli
space of hyperelliptic curves of genus is the symplectic group
\sp_{2g}(\integ/\ell). We prove that the \integ/\ell monodromy of the
moduli space of trielliptic curves with signature is the special
unitary group \su_{(r,s)}(\integ/\ell\tensor\integ[\zeta_3])
Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541–750)
The first historically documented pandemic caused by Yersinia pestis began as the Justinianic Plague in 541 within the Roman Empire and continued as the so-called First Pandemic until 750. Although paleogenomic studies have previously identified the causative agent as Y. pestis, little is known about the bacterium’s spread, diversity, and genetic history over the course of the pandemic. To elucidate the microevolution of the bacterium during this time period, we screened human remains from 21 sites in Austria, Britain, Germany, France, and Spain for Y. pestis DNA and reconstructed eight genomes. We present a methodological approach assessing single-nucleotide polymorphisms (SNPs) in ancient bacterial genomes, facilitating qualitative analyses of low coverage genomes from a metagenomic background. Phylogenetic analysis on the eight reconstructed genomes reveals the existence of previously undocumented Y. pestis diversity during the sixth to eighth centuries, and provides evidence for the presence of multiple distinct Y. pestis strains in Europe. We offer genetic evidence for the presence of the Justinianic Plague in the British Isles, previously only hypothesized from ambiguous documentary accounts, as well as the parallel occurrence of multiple derived strains in central and southern France, Spain, and southern Germany. Four of the reported strains form a polytomy similar to others seen across the Y. pestis phylogeny, associated with the Second and Third Pandemics. We identified a deletion of a 45-kb genomic region in the most recent First Pandemic strains affecting two virulence factors, intriguingly overlapping with a deletion found in 17th- to 18th-century genomes of the Second Pandemic. © 2019 National Academy of Sciences. All rights reserved
Strongly enhanced laser absorption and electron acceleration via resonant excitation of surface plasma waves
International audienceTwo-dimensional (2D) particle-in-cell numerical simulations of the interaction between a high-intensity short-pulse p-polarized laser beam and an overdense plasma are presented. It is shown that, under appropriate physical conditions, a surface plasma wave can be resonantly excited by a short-pulse laser wave, leading to strong relativistic electron acceleration together with a dramatic increase, up to 70%, of light absorption by the plasma. Purely 2D effects contribute to enhancement of electron acceleration. It is also found that the angular distribution of the hot electrons is drastically affected by the surface wave. The subsequent ion dynamics is shown to be significantly modified by the surface plasma wave excitation
Instanton bundles on Fano threefolds
We introduce the notion of an instanton bundle on a Fano threefold of index
2. For such bundles we give an analogue of a monadic description and discuss
the curve of jumping lines. The cases of threefolds of degree 5 and 4 are
considered in a greater detail.Comment: 31 page, to appear in CEJ
Big Line Bundles over Arithmetic Varieties
We prove a Hilbert-Samuel type result of arithmetic big line bundles in
Arakelov geometry, which is an analogue of a classical theorem of Siu. An
application of this result gives equidistribution of small points over
algebraic dynamical systems, following the work of Szpiro-Ullmo-Zhang. We also
generalize Chambert-Loir's non-archimedean equidistribution
- …
