1,375 research outputs found

    Uranus and Neptune: Shape and Rotation

    Full text link
    Both Uranus and Neptune are thought to have strong zonal winds with velocities of several hundred meters per second. These wind velocities, however, assume solid-body rotation periods based on Voyager 2 measurements of periodic variations in the planets' radio signals and of fits to the planets' magnetic fields; 17.24h and 16.11h for Uranus and Neptune, respectively. The realization that the radio period of Saturn does not represent the planet's deep interior rotation and the complexity of the magnetic fields of Uranus and Neptune raise the possibility that the Voyager 2 radio and magnetic periods might not represent the deep interior rotation periods of the ice giants. Moreover, if there is deep differential rotation within Uranus and Neptune no single solid-body rotation period could characterize the bulk rotation of the planets. We use wind and shape data to investigate the rotation of Uranus and Neptune. The shapes (flattening) of the ice giants are not measured, but only inferred from atmospheric wind speeds and radio occultation measurements at a single latitude. The inferred oblateness values of Uranus and Neptune do not correspond to bodies rotating with the Voyager rotation periods. Minimization of wind velocities or dynamic heights of the 1 bar isosurfaces, constrained by the single occultation radii and gravitational coefficients of the planets, leads to solid-body rotation periods of ~16.58h for Uranus and ~17.46h for Neptune. Uranus might be rotating faster and Neptune slower than Voyager rotation speeds. We derive shapes for the planets based on these rotation rates. Wind velocities with respect to these rotation periods are essentially identical on Uranus and Neptune and wind speeds are slower than previously thought. Alternatively, if we interpret wind measurements in terms of differential rotation on cylinders there are essentially no residual atmospheric winds.Comment: Accepted for publication in Icarus, 20 pages, 4 tables, 9 figure

    Conformal Symmetry and Universal Properties of Quantum Hall States

    Full text link
    The low-lying excitations of a quantum Hall state on a disk geometry are edge excitations. Their dynamics is governed by a conformal field theory on the cylinder defined by the disk boundary and the time variable. We give a simple and detailed derivation of this conformal field theory for integer filling, starting from the microscopic dynamics of (2+1)(2+1)-dimensional non-relativistic electrons in Landau levels. This construction can be generalized to describe Laughlin's fractional Hall states via chiral bosonization, thereby making contact with the effective Chern-Simons theory approach. The conformal field theory dictates the finite-size effects in the energy spectrum. An experimental or numerical verification of these universal effects would provide a further confirmation of Laughlin's theory of incompressible quantum fluids.Comment: 39 pages, 7 figures (not included, they are mailed on request), harvmac CERN-TH 6702/9

    Strike, occupy, transform! Students, subjectivity and struggle

    Get PDF
    This article uses student activism to explore the way in which activists are challenging the student as consumer model through a series of experiments that blend pedagogy and protest. Specifically, I suggest that Higher Education is increasingly becoming an arena of the postpolitical, and I argue that one of the ways this student-consumer subjectivity is being (re)produced is through a series of ‘depoliticisation machines’ operating within the university. This article goes on to claim that in order to counter this, some of those resisting the neoliberalisation of higher education have been creating political-pedagogical experiments that act as ‘repoliticisation machines’, and that these experiments countered student-consumer subjectification through the creation of new radical forms of subjectivity. This paper provides an example of this activity through the work of a group called the Really Open University and its experiments at blending, protest, pedagogy and propaganda

    Using vignettes to examine preferences for paying for long-term social care in online and interview surveys

    Get PDF
    A novel approach using ‘vignettes’ to elicit public attitudes towards paying for long-term social care for older people was administered in two surveys: 1) for people aged 18-75, a web survey using an online volunteer panel; and 2) for older people aged 65+, a face-to-face interview was included within a national random location omnibus survey. Given the different sampling approaches and modes of data collection, we examined whether our key results differed between the two surveys by comparing responses for the 65-75 age group that was included in both. While responses to the vignettes were significantly different in the two surveys, after adjusting for differences in socio-demographic characteristics, the vignette results were comparable. The variations in response between the surveys thus appear to be due to differences in sample profile rather than to measurement differences due to survey mode

    Search for heavy lepton resonances decaying to a ZZ boson and a lepton in pppp collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    A search for heavy leptons decaying to a ZZ boson and an electron or a muon is presented. The search is based on pppp collision data taken at s=8\sqrt{s}=8 TeV by the ATLAS experiment at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb1^{-1}, Three high-transverse-momentum electrons or muons are selected, with two of them required to be consistent with originating from a ZZ boson decay. No significant excess above Standard Model background predictions is observed, and 95% confidence level limits on the production cross section of high-mass trilepton resonances are derived. The results are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 114-176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100-468 GeV are excluded

    Measurement of the production cross section of prompt J/ψ mesons in association with a W ± boson in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The process pp → W ± J/ψ provides a powerful probe of the production mechanism of charmonium in hadronic collisions, and is also sensitive to multiple parton interactions in the colliding protons. Using the 2011 ATLAS dataset of 4.5 fb−1 of s√ = 7 TeV pp collisions at the LHC, the first observation is made of the production of W ± + prompt J/ψ events in hadronic collisions, using W ± → μν μ and J/ψ → μ + μ −. A yield of 27.4+7.5−6.5 W ± + prompt J/ψ events is observed, with a statistical significance of 5.1σ. The production rate as a ratio to the inclusive W ± boson production rate is measured, and the double parton scattering contribution to the cross section is estimated.publishedVersio

    Search for dark matter in events with heavy quarks and missing transverse momentum in pppp collisions with the ATLAS detector

    Get PDF
    This article reports on a search for dark matter pair production in association with bottom or top quarks in 20.3fb120.3 fb^{-1} of pppp collisions collected at s=8\sqrt{s} = 8 TeV by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing bb-quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on the mass scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter--nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a coloured mediator suitable to explain a possible signal of annihilating dark matter

    Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton–proton collision data

    Get PDF
    This paper presents the performance of the ATLAS muon reconstruction during the LHC run with pp collisions at √s = 7–8 TeV in 2011–2012, focusing mainly on data collected in 2012. Measurements of the reconstruction efficiency and of the momentum scale and resolution, based on large reference samples of J/ψ → μμ, Z → μμ and ϒ → μμ decays, are presented and compared to Monte Carlo simulations. Corrections to the simulation, to be used in physics analysis, are provided. Over most of the covered phase space (muon |η| < 2.7 and 5 ≲pT ≲pT 100 GeV) the efficiency is above 99% and is measured with per-mille precision. The momentum resolution ranges from 1.7% at central rapidity and for transverse momentum pT ≃ 10 GeV, to 4% at large rapidity and pT ≃ 100 GeV. The momentum scale is known with an uncertainty of 0.05% to 0.2% depending on rapidity. A method for the recovery of final state radiation from the muons is also presented

    Measurement of distributions sensitive to the underlying event in inclusive Z-boson production in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    A measurement of charged-particle distributions sensitive to the properties of the underlying event is presented for an inclusive sample of events containing a TeX -boson, decaying to an electron or muon pair. The measurement is based on data collected using the ATLAS detector at the LHC in proton–proton collisions at a centre-of-mass energy of TeX TeV with an integrated luminosity of TeX fb TeX . Distributions of the charged particle multiplicity and of the charged particle transverse momentum are measured in regions of azimuthal angle defined with respect to the TeX -boson direction. The measured distributions are compared to similar distributions measured in jet events, and to the predictions of various Monte Carlo generators implementing different underlying event models

    Measurement of the b-hadron production cross section using decays to D*+ μ − X final states in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The b-hadron production cross section is measured with the ATLAS detector in pp collisions at √s = 7 TeV, using 3.3 pb−1 of integrated luminosity, collected during the 2010 LHC run. The b-hadrons are selected by partially reconstructing D*+μ−X final states. Differential cross sections are measured as functions of the transverse momentum and pseudorapidity. The measured production cross section for a b-hadron with pT > 9 GeV and |η| < 2.5 is 32.7±0.8(stat.)+4.5−6.8(syst.) μb, higher than the next-to-leadingorder QCD predictions but consistent within the experimental and theoretical uncertainties
    corecore