26,157 research outputs found
Enhanced feedback using zappers
Notes to support tutors in using zapper feedback for undergraduate teaching in large groups
Fano-Kondo effect in a two-level system with triple quantum dots: shot noise characteristics
We theoretically compare transport properties of Fano-Kondo effect with those
of Fano effect. We focus on shot noise characteristics of a triple quantum dot
(QD) system in the Fano-Kondo region at zero temperature, and discuss the
effect of strong electric correlation in QDs. We found that the modulation of
the Fano dip is strongly affected by the on-site Coulomb interaction in QDs.Comment: 4 pages, 6figure
Development of a nickel cadmium storage cell immune to damage from overdischarge and overcharge
Nickel-cadmium battery immune to damage from overcharge and overdischarg
The XMM-Newton slew survey in the 2-10 keV band
The XMM-Newton Slew Survey (XSS) covers a significant fraction of the sky in
a broad X-ray bandpass. Although shallow by contemporary standards, in the
`classical' 2-10 keV band of X-ray astronomy, the XSS provides significantly
better sensitivity than any currently available all-sky survey. We investigate
the source content of the XSS, focussing on detections in the 2-10 keV band
down to a very low threshold (> 4 counts net of background). At the faint end,
the survey reaches a flux sensitivity of roughly 3e-12 erg/cm2/s (2-10 keV).
Our starting point was a sample of 487 sources detected in the XMMSL1d2 XSS at
high galactic latitude in the hard band. Through cross-correlation with
published source catalogues from surveys spanning the electromagnetic spectrum
from radio to gamma-rays, we find that 45% of the sources have likely
identifications with normal/active galaxies, 18% are associated with other
classes of X-ray object (nearby coronally active stars, accreting binaries,
clusters of galaxies), leaving 37% of the XSS sources with no current
identification. We go on to define an XSS extragalactic hard band sample
comprised of 219 galaxies and active galaxies. We investigate the properties of
this extragalactic sample including its X-ray logN-logS distribution. We find
that in the low-count limit, the XSS is strongly affected by Eddington bias.
There is also a very strong bias in the XSS against the detection of extended
sources, most notably clusters of galaxies. A significant fraction of the
detections at and around the low-count limit may be spurious. Nevertheless, it
is possible to use the XSS to extract a reasonably robust sample of
extragalactic sources, excluding galaxy clusters. The differential logN-logS
relation of these extragalactic sources matches very well to the HEAO-1 A2
all-sky survey measurements at bright fluxes and to the 2XMM source counts at
the faint end.Comment: 16 pages, 13 figures, FITS table of XSS extragalactic sample
available from http://www.star.le.ac.uk/~amr30/Slew
Testing of silver cadmium cells Final report
Life cycle tests to determine silver cadmium cell capabilit
Non-Abelian quantized Hall states of electrons at filling factors 12/5 and 13/5 in the first excited Landau level
We present results of extensive numerical calculations on the ground state of
electrons in the first excited (n=1) Landau level with Coulomb interactions,
and including non-zero thickness effects, for filling factors 12/5 and 13/5 in
the torus geometry. In a region that includes these experimentally-relevant
values, we find that the energy spectrum and the overlaps with the trial states
support the previous hypothesis that the system is in the non-Abelian k = 3
liquid phase we introduced in a previous paper.Comment: 5 pages (Revtex4), 7 figure
Efficient numerical solution of the time fractional diffusion equation by mapping from its Brownian counterpart
The solution of a Caputo time fractional diffusion equation of order
is expressed in terms of the solution of a corresponding integer
order diffusion equation. We demonstrate a linear time mapping between these
solutions that allows for accelerated computation of the solution of the
fractional order problem. In the context of an -point finite difference time
discretisation, the mapping allows for an improvement in time computational
complexity from to , given a
precomputation of . The mapping is applied
successfully to the least-squares fitting of a fractional advection diffusion
model for the current in a time-of-flight experiment, resulting in a
computational speed up in the range of one to three orders of magnitude for
realistic problem sizes.Comment: 9 pages, 5 figures; added references for section
- …
