24,191 research outputs found

    Order theory and interpolation in operator algebras

    Full text link
    We continue our study of operator algebras with and contractive approximate identities (cais). In earlier papers we have introduced and studied a new notion of positivity in operator algebras, with an eye to extending certain C*-algebraic results and theories to more general algebras. Here we continue to develop this positivity and its associated ordering, proving many foundational facts. We also give many applications, for example to noncommutative topology, noncommutative peak sets, lifting problems, peak interpolation, approximate identities, and to order relations between an operator algebra and the C*-algebra it generates. In much of this it is not necessary that the algebra have an approximate identity. Many of our results apply immediately to function algebras, but we will not take the time to point these out, although most of these applications seem new.Comment: 27 pages. arXiv admin note: substantial text overlap with arXiv:1308.272

    Operator algebras with contractive approximate identities: Weak compactness and the spectrum

    Full text link
    We continue our study of operator algebras with contractive approximate identities (cais) by presenting a couple of interesting examples of operator algebras with cais, which in particular answer questions raised in previous papers in this series, for example about whether, roughly speaking, `weak compactness' of an operator algebra, or the lack of it, can be seen in the spectra of its elements.Comment: 11 pages. To appear Journal of Functional Analysis. arXiv admin note: substantial text overlap with arXiv:1308.272

    A pilot inference study for a beta-Bernoulli spatial scan statistic

    Get PDF
    The Bernoulli spatial scan statistic is used to detect localised clusters in binary labelled point data, such as that used in spatial or spatio-temporal case/control studies. We test the inferential capability of a recently developed beta-Bernoulli spatial scan statistic, which adds a beta prior to the original statistic. This pilot study, which includes two test scenarios with 6,000 data sets each, suggests a marked increase in power for a given false alert rate. We suggest a more extensive study would be worthwhile to corroborate the findings. We also speculate on an explanation for the observed improvement

    Dark matter heats up in dwarf galaxies

    Get PDF
    Gravitational potential fluctuations driven by bursty star formation can kinematically 'heat up' dark matter at the centres of dwarf galaxies. A key prediction of such models is that, at a fixed dark matter halo mass, dwarfs with a higher stellar mass will have a lower central dark matter density. We use stellar kinematics and HI gas rotation curves to infer the inner dark matter densities of eight dwarf spheroidal and eight dwarf irregular galaxies with a wide range of star formation histories. For all galaxies, we estimate the dark matter density at a common radius of 150pc, ρDM(150pc)\rho_{\rm DM}(150\,\mathrm{pc}). We find that our sample of dwarfs falls into two distinct classes. Those that stopped forming stars over 6Gyrs ago favour central densities ρDM(150pc)>108Mkpc3\rho_{\rm DM}(150\,\mathrm{pc})>10^8\,{\rm M}_\odot\,{\rm kpc}^{-3}, consistent with cold dark matter cusps, while those with more extended star formation favour ρDM(150pc)<108Mkpc3\rho_{\rm DM}(150\,\mathrm{pc})<10^8\,{\rm M}_{\odot}\,{\rm kpc}^{-3}, consistent with shallower dark matter cores. Using abundance matching to infer pre-infall halo masses, M200M_{200}, we show that this dichotomy is in excellent agreement with models in which dark matter is heated up by bursty star formation. In particular, we find that ρDM(150pc)\rho_{\rm DM}(150\,\mathrm{pc}) steadily decreases with increasing stellar mass-to-halo mass ratio, M/M200M_*/M_{200}. Our results suggest that, to leading order, dark matter is a cold, collisionless, fluid that can be kinematically 'heated up' and moved around.Comment: 22 pages, 10 Figures. Final version accepted for publication in MNRA

    A Kondo impurity in a disordered metal: Anderson's theorem revisited

    Full text link
    We consider a local moment which is coupled by a non-random Kondo JJ to a band of conduction electrons in a random potential. We prove an analog of Anderson's theorem in a large-N limit of this model. The theorem states that when the disorder is weak, the disorder-averaged low-temperature thermodynamics is independent of the strength of the disorder; remarkably, it further states that fluctuation effects in the long-time limit are {\it independent even of the realization of the disorder}. We discuss the relationship of this theorem to theoretical and experimental studies of similar problems.Comment: 4 pages, RevTe

    The case for a cold dark matter cusp in Draco

    Get PDF
    We use a new mass modelling method, GravSphere, to measure the central dark matter density profile of the Draco dwarf spheroidal galaxy. Draco's star formation shut down long ago, making it a prime candidate for hosting a 'pristine' dark matter cusp, unaffected by stellar feedback during galaxy formation. We first test GravSphere on a suite of tidally stripped mock 'Draco'-like dwarfs. We show that we are able to correctly infer the dark matter density profile of both cusped and cored mocks within our 95% confidence intervals. While we obtain only a weak inference on the logarithmic slope of these density profiles, we are able to obtain a robust inference of the amplitude of the inner dark matter density at 150pc, ρDM(150pc)\rho_{\rm DM}(150\,{\rm pc}). We show that, combined with constraints on the density profile at larger radii, this is sufficient to distinguish a Λ\Lambda Cold Dark Matter (Λ\LambdaCDM) cusp - that has ρDM(150pc)>1.8×108Mkpc3\rho_{\rm DM}(150\,{\rm pc}) > 1.8 \times 10^8\,{\rm M}_\odot \,{\rm kpc}^{-3} - from alternative dark matter models that have lower inner densities. We then apply GravSphere to the real Draco data. We find that Draco has an inner dark matter density of ρDM(150pc)=2.40.6+0.5×108Mkpc3\rho_{\rm DM}(150\,{\rm pc}) = 2.4_{-0.6}^{+0.5} \times 10^8\,{\rm M}_\odot \,{\rm kpc}^{-3}, consistent with a Λ\LambdaCDM cusp. Using a velocity independent SIDM model, calibrated on Λ\LambdaSIDM cosmological simulations, we show that Draco's high central density gives an upper bound on the SIDM cross section of σ/m<0.57cm2g1\sigma/m < 0.57\,{\rm cm}^2\,{\rm g}^{-1} at 99% confidence. We conclude that the inner density of nearby dwarf galaxies like Draco provides a new and competitive probe of dark matter models.Comment: 19 pages, 11 Figures. Final version accepted for publication in MNRA

    A Power-Enhanced Algorithm for Spatial Anomaly Detection in Binary Labelled Point Data Using the Spatial Scan Statistic [postprint]

    Get PDF
    This paper presents a novel modification to an existing algorithm for spatial anomaly detection in binary labeled point data sets, using the Bernoulli version of the Spatial Scan Statistic. We identify a potential ambiguity in p-values produced by Monte Carlo testing, which (by the selection of the most conservative p-value) can lead to sub-optimal power. When such ambiguity occurs, the modification uses a very inexpensive secondary test to suggest a less conservative p-value. Using benchmark tests, we show that this appears to restore power to the expected level, whilst having similarly retest variance to the original. The modification also appears to produce a small but significant improvement in overall detection performance when multiple anomalies are present
    corecore