27 research outputs found

    Effect of the Hope FT-B1 Allele on wheat heading time and yield components

    Get PDF
    Precise regulation of flowering time is critical for plant reproductive success and, in cereals, to maximize grain yields. Seasonal cues including temperature and day length are integrated to regulate the timing of flowering. In temperate cereals, extended periods of cold (vernalization) release the repression of FLOWERING LOCUS T1 (FT1), which is upregulated in the leaves in response to inductive long-day photoperiods. FT1 is a homolog of rice HD3a, which encodes a protein transported from leaves to the shoot apical meristem to induce flowering. A rare FT-B1 allele from the wheat variety “Hope” has been previously shown to be associated with an early flowering phenotype under long-day photoperiods. Here, we demonstrate that the Hope FT-B1 allele accelerates flowering even under short days, and that it is epistatic to the VERNALIZATION 1 (VRN1) gene. On average, the introgression of Hope FT-B1 into 6 genetic backgrounds resulted in 2.6 days acceleration of flowering (P < 0.0001) and 4.1% increase in spike weight (P = 0.0093), although in one variety, it was associated with a decrease in spike weight. These results suggest that the Hope FT-B1 allele could be useful in wheat breeding programs to subtly accelerate floral development and increase adaptation to changing environments.Fil: Nitcher, Rebecca. University of California. Department of Plant Sciences; Estados UnidosFil: Pearce, Stephen. University of California. Department of Plant Sciences; Estados UnidosFil: Tranquilli, Gabriela. University of California. Department of Plant Sciences; Estados Unidos. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; ArgentinaFil: Xiaoqin, Zhang. University of California. Department of Plant Sciences; Estados UnidosFil: Dubcovsky, Jorge. University of California. Department of Plant Sciences; Estados Unidos. Howard Hughes Medical Institute; Estados Unido

    Effect of the hope FT-B1 allele on wheat heading time and yield components.

    Get PDF
    Precise regulation of flowering time is critical for plant reproductive success and, in cereals, to maximize grain yields. Seasonal cues including temperature and day length are integrated to regulate the timing of flowering. In temperate cereals, extended periods of cold (vernalization) release the repression of FLOWERING LOCUS T1 (FT1), which is upregulated in the leaves in response to inductive long-day photoperiods. FT1 is a homolog of rice HD3a, which encodes a protein transported from leaves to the shoot apical meristem to induce flowering. A rare FT-B1 allele from the wheat variety "Hope" has been previously shown to be associated with an early flowering phenotype under long-day photoperiods. Here, we demonstrate that the Hope FT-B1 allele accelerates flowering even under short days, and that it is epistatic to the VERNALIZATION 1 (VRN1) gene. On average, the introgression of Hope FT-B1 into 6 genetic backgrounds resulted in 2.6 days acceleration of flowering (P&lt;0.0001) and 4.1% increase in spike weight (P=0.0093), although in one variety, it was associated with a decrease in spike weight. These results suggest that the Hope FT-B1 allele could be useful in wheat breeding programs to subtly accelerate floral development and increase adaptation to changing environments

    Increased copy number at the HvFT1 locus is associated with accelerated flowering time in barley

    Get PDF
    A precise regulation of flowering time is critical for plant reproductive success, and therefore, a better understanding of the natural variation in genes regulating the initiation of the reproductive phase is required to develop well-adapted varieties. In both monocot and dicot species, the FLOWERING LOCUS T (FT) is a central integrator of seasonal signals perceived by the leaves. The encoded mobile protein (florigen) is transmitted to the apical meristem where it induces flowering. The FT homolog in barley (Hordeum vulgare L.), designated HvFT1, was shown to correspond to the vernalization locus VRN-H3, and natural alleles for spring and winter growth habit were identified. In this study, we demonstrate that the HvFT1 allele present in the barley genetic stock (BGS213) associated with a dominant spring growth habit carries at least four identical copies of HvFT1, whereas most barley varieties have a single copy. Increased copy number is associated with earlier transcriptional up-regulation of HvFT1 and a spring growth habit. This allele is epistatic to winter alleles for VRN-H1 and VRN-H2. Among accessions with one HvFT1 copy, haplotype differences in the HvFT1 promoter and first intron are also associated with differences in flowering time, which are modulated by genetic background. These different HvFT1 alleles can be used to develop barley varieties adapted to different or changing environments. Our results, together with studies of other wheat and barley flowering genes, show that copy number variation plays an important role in the regulation of developmental processes in the temperate cereals

    Characterization of FLOWERING LOCUS T1 (FT1) gene in Brachypodium and wheat.

    No full text
    The phase transition from vegetative to reproductive growth is a critical event in the life cycle of flowering plants. FLOWERING LOCUS T (FT) plays a central role in the regulation of this transition by integrating signals from multiple flowering pathways in the leaves and transmitting them to the shoot apical meristem. In this study, we characterized FT homologs in the temperate grasses Brachypodium distachyon and polyploid wheat using transgenic and mutant approaches. Downregulation of FT1 by RNAi was associated with a significant downregulation of the FT-like genes FT2 and FT4 in Brachypodium and FT2 and FT5 in wheat. In a transgenic wheat line carrying a highly-expressed FT1 allele, FT2 and FT3 were upregulated under both long and short days. Overexpression of FT1 caused extremely early flowering during shoot regeneration in both Brachypodium and hexaploid wheat, and resulted in insufficient vegetative tissue to support the production of viable seeds. Downregulation of FT1 transcripts by RNA interference (RNAi) resulted in non-flowering Brachypodium plants and late flowering plants (2-4 weeks delay) in wheat. A similar delay in heading time was observed in tetraploid wheat plants carrying mutations for both FT-A1 and FT-B1. Plants homozygous only for mutations in FT-B1 flowered later than plants homozygous only for mutations in FT-A1, which corresponded with higher transcript levels of FT-B1 relative to FT-A1 in the early stages of development. Taken together, our data indicate that FT1 plays a critical role in the regulation of flowering in Brachypodium and wheat, and that this role is associated with the simultaneous regulation of other FT-like genes. The differential effects of mutations in FT-A1 and FT-B1 on wheat heading time suggest that different allelic combinations of FT1 homoeologs could be used to adjust wheat heading time to improve adaptation to changing environments
    corecore