1,268 research outputs found
Sexual function in 16- to 21-year-olds in Britain
Purpose:
Concern about young people's sexuality is focused on the need to prevent harmful outcomes such as sexually transmitted infections and unplanned pregnancy. Although the benefit of a broader perspective is recognized, data on other aspects of sexuality, particularly sexual function, are scant. We sought to address this gap by measuring the population prevalence of sexual function problems, help seeking, and avoidance of sex in young people.
Methods:
A cross-sectional stratified probability sample survey (Natsal-3) of 15,162 women and men in Britain (response rate: 57.7%), using computer-assisted self-interviews. Data come from 1875 (71.9%) sexually active, and 517 sexually inactive (18.7%), participants aged 16–21 years. Measures were single items from a validated measure of sexual function (the Natsal-SF).
Results:
Among sexually active 16- to 21-year-old participants, 9.1% of men and 13.4% of women reported a distressing sexual problem lasting 3 months or more in the last year. Most common among men was reaching a climax too quickly (4.5%), and among women was difficulty in reaching climax (6.3%). Just over a third (35.5%) of men and 42.3% of women reporting a problem had sought help, but rarely from professional sources. Among those who had not had sex in the last year, just >10% of young men and women said they had avoided sex because of sexual difficulties.
Conclusions:
Distressing sexual function problems are reported by a sizeable minority of sexually active young people. Education is required, and counseling should be available, to prevent lack of knowledge, anxiety, and shame progressing into lifelong sexual difficulties
An examination of the role of cuisine in cultural transmission with particular reference to the effects of migration upon the transmission of cultural information
COMPREHENSION OF SELECTED LINGUISTIC CONSTRUCTIONS BY NORMAL 36 TO 66 MONTH OLD CHILDREN AND 72 TO 144 MONTH OLD MENTALLY RETARDED CHILDREN
Caveolae in Rabbit Ventricular Myocytes: Distribution and Dynamic Diminution after Cell Isolation
Caveolae are signal transduction centers, yet their subcellular distribution and preservation in cardiac myocytes after cell isolation are not well documented. Here, we quantify caveolae located within 100 nm of the outer cell surface membrane in rabbit single-ventricular cardiomyocytes over 8 h post-isolation and relate this to the presence of caveolae in intact tissue. Hearts from New Zealand white rabbits were either chemically fixed by coronary perfusion or enzymatically digested to isolate ventricular myocytes, which were subsequently fixed at 0, 3, and 8 h post-isolation. In live cells, the patch-clamp technique was used to measure whole-cell plasma membrane capacitance, and in fixed cells, caveolae were quantified by transmission electron microscopy. Changes in cell-surface topology were assessed using scanning electron microscopy. In fixed ventricular myocardium, dual-axis electron tomography was used for three-dimensional reconstruction and analysis of caveolae in situ. The presence and distribution of surface-sarcolemmal caveolae in freshly isolated cells matches that of intact myocardium. With time, the number of surface-sarcolemmal caveolae decreases in isolated cardiomyocytes. This is associated with a gradual increase in whole-cell membrane capacitance. Concurrently, there is a significant increase in area, diameter, and circularity of sub-sarcolemmal mitochondria, indicative of swelling. In addition, electron tomography data from intact heart illustrate the regular presence of caveolae not only at the surface sarcolemma, but also on transverse-tubular membranes in ventricular myocardium. Thus, caveolae are dynamic structures, present both at surface-sarcolemmal and transverse-tubular membranes. After cell isolation, the number of surface-sarcolemmal caveolae decreases significantly within a time frame relevant for single-cell research. The concurrent increase in cell capacitance suggests that membrane incorporation of surface-sarcolemmal caveolae underlies this, but internalization and/or micro-vesicle loss to the extracellular space may also contribute. Given that much of the research into cardiac caveolae-dependent signaling utilizes isolated cells, and since caveolae-dependent pathways matter for a wide range of other study targets, analysis of isolated cell data should take the time post-isolation into account
Multi‐century stasis in C3 and C4 grass distributions across the contiguous United States since the industrial revolution
AimsUnderstanding the functional response of ecosystems to past global change is crucial to predicting performance in future environments. One sensitive and functionally significant attribute of grassland ecosystems is the percentage of species that use the C4 versus C3 photosynthetic pathway. Grasses using C3 and C4 pathways are expected to have different responses to many aspects of anthropogenic environmental change that have followed the industrial revolution, including increases in temperature and atmospheric CO2, changes to land management and fire regimes, precipitation seasonality, and nitrogen deposition. In spite of dramatic environmental changes over the past 300 years, it is unknown if the C4 grass percentage in grasslands has shifted.LocationContiguous United States of America.MethodsHere, we used stable carbon isotope data (i.e. δ13C) from 30 years of soil samples, as well as herbivore tissues that date to 1739 CE, to reconstruct coarse‐grain C3 and C4 grass composition in North American grassland sites to compare with modern vegetation. We spatially resampled these three datasets to a shared 100‐km grid, allowing comparison of δ13C values at a resolution and extent common for climate model outputs and biogeographical studies.ResultsAt this spatial grain, the bison tissue proxy was superior to the soil proxy because the soils reflect integration of local carbon inputs, whereas bison sample vegetation across landscapes. Bison isotope values indicate that historical grassland photosynthetic‐type composition was similar to modern vegetation.Main conclusionsDespite major environmental change, comparing modern plot vegetation data to three centuries of bison δ13C data revealed that the biogeographical distribution of C3 and C4 grasses has not changed significantly since the 1700s. This is particularly surprising given the expected CO2 fertilization of C3 grasses. Our findings highlight the critical importance of capturing the full range of physiological, ecological and demographical processes in biosphere models predicting future climates and ecosystems.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139065/1/jbi13061.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139065/2/jbi13061_am.pd
Genetic improvement of tomato by targeted control of fruit softening
Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain 'non-ripening mutations' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase
Validation of a simple turbulence model suitable for closure of temporally-filtered Navier-Stokes equations using a helium plume.
A validation study has been conducted for a turbulence model used to close the temporally filtered Navier Stokes (TFNS) equations. A turbulence model was purposely built to support fire simulations under the Accelerated Strategic Computing (ASC) program. The model was developed so that fire transients could be simulated and it has been implemented in SIERRA/Fuego. The model is validated using helium plume data acquired for the Weapon System Certification Campaign (C6) program in the Fire Laboratory for Model Accreditation and Experiments (FLAME). The helium plume experiments were chosen as the first validation problem for SIERRA/Fuego because they embody the first pair-wise coupling of scalar and momentum fields found in fire plumes. The validation study includes solution verification through grid and time step refinement studies. A formal statistical comparison is used to assess the model uncertainty. The metric uses the centerline vertical velocity of the plume. The results indicate that the simple model is within the 95% confidence interval of the data for elevations greater than 0.4 meters and is never more than twice the confidence interval from the data. The model clearly captures the dominant puffing mode in the fire but under resolves the vorticity field. Grid dependency of the model is noted
Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon
The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe
Severe early onset preeclampsia: short and long term clinical, psychosocial and biochemical aspects
Preeclampsia is a pregnancy specific disorder commonly defined as de novo hypertension
and proteinuria after 20 weeks gestational age. It occurs in approximately 3-5% of pregnancies and it is still a major cause of both foetal and maternal morbidity and mortality worldwide1. As extensive research has not yet elucidated the aetiology of preeclampsia, there are no rational preventive or therapeutic interventions
available. The only rational treatment is delivery, which benefits the mother but is not in the interest of the foetus, if remote from term. Early onset preeclampsia (<32 weeks’ gestational age) occurs in less than 1% of pregnancies. It is, however often associated with maternal morbidity as the risk of progression
to severe maternal disease is inversely related with gestational age at onset2. Resulting prematurity is therefore the main cause of neonatal mortality and morbidity
in patients with severe preeclampsia3. Although the discussion is ongoing, perinatal survival is suggested to be increased in patients with preterm preeclampsia
by expectant, non-interventional management. This temporising treatment option to lengthen pregnancy includes the use of antihypertensive medication to control hypertension, magnesium sulphate to prevent eclampsia and corticosteroids
to enhance foetal lung maturity4. With optimal maternal haemodynamic status and reassuring foetal condition this results on average in an extension of 2 weeks. Prolongation of these pregnancies is a great challenge for clinicians to balance between potential maternal risks on one the eve hand and possible foetal benefits on the other. Clinical controversies regarding prolongation of preterm preeclamptic pregnancies still exist – also taking into account that preeclampsia is the leading cause of maternal mortality in the Netherlands5 - a debate which is even more pronounced in very preterm pregnancies with questionable foetal viability6-9. Do maternal risks of prolongation of these very early pregnancies outweigh
the chances of neonatal survival? Counselling of women with very early onset preeclampsia not only comprises of knowledge of the outcome of those particular pregnancies, but also knowledge of outcomes of future pregnancies of these women is of major clinical importance.
This thesis opens with a review of the literature on identifiable risk factors of preeclampsia
- …
