21 research outputs found

    Non-tachyonic Scherk-Schwarz compactifications, cosmology and moduli stabilization

    Full text link
    It is well-known that Scherk-Schwarz compactifications in string theory have a tachyon in the closed string spectrum appearing for a critical value of a compact radius. The tachyon can be removed by an appropriate orientifold projection in type II strings, giving rise to tachyon-free compactifications. We present explicit examples of this type in various dimensions, including six and four-dimensional chiral examples, with softly broken supersymmetry in the closed sector and non-BPS configurations in the open sector. These vacua are interesting frameworks for studying various cosmological issues. We discuss four-dimensional cosmological solutions and moduli stabilization triggered by nonperturbative effects like gaugino condensation on D-branes and fluxes.Comment: 36 pages, LaTeX; added reference

    Ghost Condensation and a Consistent Infrared Modification of Gravity

    Full text link
    We propose a theoretically consistent modification of gravity in the infrared, which is compatible with all current experimental observations. This is an analog of Higgs mechanism in general relativity, and can be thought of as arising from ghost condensation--a background where a scalar field \phi has a constant velocity, = M^2. The ghost condensate is a new kind of fluid that can fill the universe, which has the same equation of state, \rho = -p, as a cosmological constant, and can hence drive de Sitter expansion of the universe. However, unlike a cosmological constant, it is a physical fluid with a physical scalar excitation, which can be described by a systematic effective field theory at low energies. The excitation has an unusual low-energy dispersion relation \omega^2 \sim k^4 / M^2. If coupled to matter directly, it gives rise to small Lorentz-violating effects and a new long-range 1/r^2 spin dependent force. In the ghost condensate, the energy that gravitates is not the same as the particle physics energy, leading to the possibility of both sources that can gravitate and antigravitate. The Newtonian potential is modified with an oscillatory behavior starting at the distance scale M_{Pl}/M^2 and the time scale M_{Pl}^2/M^3. This theory opens up a number of new avenues for attacking cosmological problems, including inflation, dark matter and dark energy.Comment: 42 pages, LaTeX 2

    Charged Particles in a 2+1 Curved Background

    Full text link
    The coupling to a 2+1 background geometry of a quantized charged test particle in a strong magnetic field is analyzed. Canonical operators adapting to the fast and slow freedoms produce a natural expansion in the inverse square root of the magnetic field strength. The fast freedom is solved to the second order. At any given time, space is parameterized by a couple of conjugate operators and effectively behaves as the `phase space' of the slow freedom. The slow Hamiltonian depends on the magnetic field norm, its covariant derivatives, the scalar curvature and presents a peculiar coupling with the spin-connection.Comment: 22 page

    Linear Collider Capabilities for Supersymmetry in Dark Matter Allowed Regions of the mSUGRA Model

    Full text link
    Recent comparisons of minimal supergravity (mSUGRA) model predictions with WMAP measurements of the neutralino relic density point to preferred regions of model parameter space. We investigate the reach of linear colliders (LC) with s=0.5\sqrt{s}=0.5 and 1 TeV for SUSY in the framework of the mSUGRA model. We find that LCs can cover the entire stau co-annihilation region provided \tan\beta \alt 30. In the hyperbolic branch/focus point (HB/FP) region of parameter space, specialized cuts are suggested to increase the reach in this important ``dark matter allowed'' area. In the case of the HB/FP region, the reach of a LC extends well past the reach of the CERN LHC. We examine a case study in the HB/FP region, and show that the MSSM parameters μ\mu and M2M_2 can be sufficiently well-measured to demonstrate that one would indeed be in the HB/FP region, where the lightest chargino and neutralino have a substantial higgsino component.Comment: 29 pages, 15 EPS figures; updated version slightly modified to conform with published versio

    Equilibrium configurations of two charged masses in General Relativity

    Get PDF
    An asymptotically flat static solution of Einstein-Maxwell equations which describes the field of two non-extreme Reissner - Nordstr\"om sources in equilibrium is presented. It is expressed in terms of physical parameters of the sources (their masses, charges and separating distance). Very simple analytical forms were found for the solution as well as for the equilibrium condition which guarantees the absence of any struts on the symmetry axis. This condition shows that the equilibrium is not possible for two black holes or for two naked singularities. However, in the case when one of the sources is a black hole and another one is a naked singularity, the equilibrium is possible at some distance separating the sources. It is interesting that for appropriately chosen parameters even a Schwarzschild black hole together with a naked singularity can be "suspended" freely in the superposition of their fields.Comment: 4 pages; accepted for publication in Phys. Rev.

    Coherent States for Black Holes

    Full text link
    We determine coherent states peaked at classical space-time of the Schwarzschild black hole in the frame-work of canonical quantisation of general relativity. The information about the horizon is naturally encoded in the phase space variables, and the perturbative quantum fluctuations around the classical geometry depend on the distance from the horizon. For small black holes, space near the vicinity of the singularity appears discrete with the singular point excluded from the spectrum.Comment: 48 pages, 18+1 figures, some modifications, references adde

    Non-Linear Integral Equations for complex Affine Toda associated to simply laced Lie algebras

    Full text link
    A set of coupled non-linear integral equations is derived for a class of models connected with the quantum group Uq(g^)U_q(\hat g) (gg simply laced Lie algebra), which are solvable using the Bethe Ansatz; these equations describe arbitrary excited states of a system with finite spatial length LL. They generalize the Destri-De Vega equation for the Sine-Gordon/massive Thirring model to affine Toda field theory with imaginary coupling constant. As an application, the central charge and all the conformal weights of the UV conformal field theory are extracted in a straightforward manner. The quantum group truncation for qq at a root of unity is discussed in detail; in the UV limit we recover through this procedure the RCFTs with extended W(g)W(g) conformal symmetry.Comment: 33 pages, TeX with lanlmac (revised: minor misprints corrected, some comments added, appendix slightly expanded revised 05/98: more misprints corrected, important refs added
    corecore