21 research outputs found
Non-tachyonic Scherk-Schwarz compactifications, cosmology and moduli stabilization
It is well-known that Scherk-Schwarz compactifications in string theory have
a tachyon in the closed string spectrum appearing for a critical value of a
compact radius. The tachyon can be removed by an appropriate orientifold
projection in type II strings, giving rise to tachyon-free compactifications.
We present explicit examples of this type in various dimensions, including six
and four-dimensional chiral examples, with softly broken supersymmetry in the
closed sector and non-BPS configurations in the open sector. These vacua are
interesting frameworks for studying various cosmological issues. We discuss
four-dimensional cosmological solutions and moduli stabilization triggered by
nonperturbative effects like gaugino condensation on D-branes and fluxes.Comment: 36 pages, LaTeX; added reference
Ghost Condensation and a Consistent Infrared Modification of Gravity
We propose a theoretically consistent modification of gravity in the
infrared, which is compatible with all current experimental observations. This
is an analog of Higgs mechanism in general relativity, and can be thought of as
arising from ghost condensation--a background where a scalar field \phi has a
constant velocity, = M^2. The ghost condensate is a new kind of
fluid that can fill the universe, which has the same equation of state, \rho =
-p, as a cosmological constant, and can hence drive de Sitter expansion of the
universe. However, unlike a cosmological constant, it is a physical fluid with
a physical scalar excitation, which can be described by a systematic effective
field theory at low energies. The excitation has an unusual low-energy
dispersion relation \omega^2 \sim k^4 / M^2. If coupled to matter directly, it
gives rise to small Lorentz-violating effects and a new long-range 1/r^2 spin
dependent force. In the ghost condensate, the energy that gravitates is not the
same as the particle physics energy, leading to the possibility of both sources
that can gravitate and antigravitate. The Newtonian potential is modified with
an oscillatory behavior starting at the distance scale M_{Pl}/M^2 and the time
scale M_{Pl}^2/M^3. This theory opens up a number of new avenues for attacking
cosmological problems, including inflation, dark matter and dark energy.Comment: 42 pages, LaTeX 2
Charged Particles in a 2+1 Curved Background
The coupling to a 2+1 background geometry of a quantized charged test
particle in a strong magnetic field is analyzed. Canonical operators adapting
to the fast and slow freedoms produce a natural expansion in the inverse square
root of the magnetic field strength. The fast freedom is solved to the second
order.
At any given time, space is parameterized by a couple of conjugate operators
and effectively behaves as the `phase space' of the slow freedom. The slow
Hamiltonian depends on the magnetic field norm, its covariant derivatives, the
scalar curvature and presents a peculiar coupling with the spin-connection.Comment: 22 page
Linear Collider Capabilities for Supersymmetry in Dark Matter Allowed Regions of the mSUGRA Model
Recent comparisons of minimal supergravity (mSUGRA) model predictions with
WMAP measurements of the neutralino relic density point to preferred regions of
model parameter space. We investigate the reach of linear colliders (LC) with
and 1 TeV for SUSY in the framework of the mSUGRA model. We find
that LCs can cover the entire stau co-annihilation region provided \tan\beta
\alt 30. In the hyperbolic branch/focus point (HB/FP) region of parameter
space, specialized cuts are suggested to increase the reach in this important
``dark matter allowed'' area. In the case of the HB/FP region, the reach of a
LC extends well past the reach of the CERN LHC. We examine a case study in the
HB/FP region, and show that the MSSM parameters and can be
sufficiently well-measured to demonstrate that one would indeed be in the HB/FP
region, where the lightest chargino and neutralino have a substantial higgsino
component.Comment: 29 pages, 15 EPS figures; updated version slightly modified to
conform with published versio
Equilibrium configurations of two charged masses in General Relativity
An asymptotically flat static solution of Einstein-Maxwell equations which
describes the field of two non-extreme Reissner - Nordstr\"om sources in
equilibrium is presented. It is expressed in terms of physical parameters of
the sources (their masses, charges and separating distance). Very simple
analytical forms were found for the solution as well as for the equilibrium
condition which guarantees the absence of any struts on the symmetry axis. This
condition shows that the equilibrium is not possible for two black holes or for
two naked singularities. However, in the case when one of the sources is a
black hole and another one is a naked singularity, the equilibrium is possible
at some distance separating the sources. It is interesting that for
appropriately chosen parameters even a Schwarzschild black hole together with a
naked singularity can be "suspended" freely in the superposition of their
fields.Comment: 4 pages; accepted for publication in Phys. Rev.
Coherent States for Black Holes
We determine coherent states peaked at classical space-time of the
Schwarzschild black hole in the frame-work of canonical quantisation of general
relativity. The information about the horizon is naturally encoded in the phase
space variables, and the perturbative quantum fluctuations around the classical
geometry depend on the distance from the horizon. For small black holes, space
near the vicinity of the singularity appears discrete with the singular point
excluded from the spectrum.Comment: 48 pages, 18+1 figures, some modifications, references adde
Non-Linear Integral Equations for complex Affine Toda associated to simply laced Lie algebras
A set of coupled non-linear integral equations is derived for a class of
models connected with the quantum group ( simply laced Lie
algebra), which are solvable using the Bethe Ansatz; these equations describe
arbitrary excited states of a system with finite spatial length . They
generalize the Destri-De Vega equation for the Sine-Gordon/massive Thirring
model to affine Toda field theory with imaginary coupling constant. As an
application, the central charge and all the conformal weights of the UV
conformal field theory are extracted in a straightforward manner. The quantum
group truncation for at a root of unity is discussed in detail; in the UV
limit we recover through this procedure the RCFTs with extended
conformal symmetry.Comment: 33 pages, TeX with lanlmac (revised: minor misprints corrected, some
comments added, appendix slightly expanded revised 05/98: more misprints
corrected, important refs added
