6,278 research outputs found
Exponential Convergence Bounds using Integral Quadratic Constraints
The theory of integral quadratic constraints (IQCs) allows verification of
stability and gain-bound properties of systems containing nonlinear or
uncertain elements. Gain bounds often imply exponential stability, but it can
be challenging to compute useful numerical bounds on the exponential decay
rate. In this work, we present a modification of the classical IQC results of
Megretski and Rantzer that leads to a tractable computational procedure for
finding exponential rate certificates
Learning to Transform Time Series with a Few Examples
We describe a semi-supervised regression algorithm that learns to transform one time series into another time series given examples of the transformation. This algorithm is applied to tracking, where a time series of observations from sensors is transformed to a time series describing the pose of a target. Instead of defining and implementing such transformations for each tracking task separately, our algorithm learns a memoryless transformation of time series from a few example input-output mappings. The algorithm searches for a smooth function that fits the training examples and, when applied to the input time series, produces a time series that evolves according to assumed dynamics. The learning procedure is fast and lends itself to a closed-form solution. It is closely related to nonlinear system identification and manifold learning techniques. We demonstrate our algorithm on the tasks of tracking RFID tags from signal strength measurements, recovering the pose of rigid objects, deformable bodies, and articulated bodies from video sequences. For these tasks, this algorithm requires significantly fewer examples compared to fully-supervised regression algorithms or semi-supervised learning algorithms that do not take the dynamics of the output time series into account
High-Dimensional Matched Subspace Detection When Data are Missing
We consider the problem of deciding whether a highly incomplete signal lies
within a given subspace. This problem, Matched Subspace Detection, is a
classical, well-studied problem when the signal is completely observed. High-
dimensional testing problems in which it may be prohibitive or impossible to
obtain a complete observation motivate this work. The signal is represented as
a vector in R^n, but we only observe m << n of its elements. We show that
reliable detection is possible, under mild incoherence conditions, as long as m
is slightly greater than the dimension of the subspace in question
- …
