63 research outputs found

    Does Regulatory Scrutiny Change Investment Behavior? Evidence of Suboptimal Portfolio Rebalancing After the Financial Crisis

    Get PDF
    Insurers that show losses are expected to sell tax-free securities and replace them with taxable securities since they can no longer benefit from tax savings. However, rebalancing these portfolios after the financial crisis would entail recognizing additional losses during a time period when their financial performance was under stress and their industry was under increased scrutiny. I examine portfolio rebalancing behavior using the period after the financial crisis as a proxy for increased regulatory scrutiny. I predict and find that insurers with losses subsequent to the financial crisis were less likely to increase their ratio of taxable/nontaxable securities. Insurers may also face increased regulatory scrutiny due to their own actions which I measure as whether an insurer is in regulatory violation. I further find that insurers that are in regulatory violation (using IRIS ratios) during the financial crisis are less likely to increase their ratio of taxable/nontaxable securities

    How Fair Value Information Changes Portfolio Rebalancing Behavior in the Property and Casualty Insurance Industry

    Get PDF
    When making investment decisions, Property & Casualty insurers (P&Cs) carefully consider the impact of the mix of taxable and tax-exempt securities on their overall tax liability. However, changes in accounting regulations may have led managers of P&Cs to make decisions based on the accounting effects rather than the economic effects. We examine a relationship among operating and investment income and portfolio rebalancing surrounding the adoption of (SSAP) No. 100 - Fair Value Measurements. Our main results indicate that the association between operating and investment losses and rebalancing investment portfolios towards taxable investments was strengthened in the (SSAP) No. 100 period

    Metastable Se6 as a ligand for Ag+: from isolated molecular to polymeric 1D and 2D structures

    Get PDF
    Attempts to prepare the hitherto unknown Se6 2+ cation by the reaction of elemental selenium and Ag[A] ([A]- = [Sb(OTeF5)6]-, [Al(OC(CF3)3)4]-) in SO2 led to the formation of [(OSO)Ag(Se6)Ag(OSO)][Sb(OTeF5)6]2 1 and [(OSO)2Ag(Se6)Ag(OSO)2][Al(OC(CF3)3)4]2 2a. 1 could only be prepared by using bromine as co-oxidant, however, bulk 2b (2a with loss of SO2) was accessible from Ag[Al(OC(CF3)3)4] and grey Se in SO2 (chem. analysis). The reactions of Ag[MF6] (M= As, Sb) and elemental selenium led to crystals of 1/∞{[Ag(Se6)]∞[Ag2(SbF6)3]∞} 3 and {1/∞[Ag(Se6)Ag]∞}[AsF6]2 4. Pure bulk 4 was best prepared by the reaction of Se4[AsF6]2, silver metal and elemental selenium. Attempts to prepare bulk 1 and 3 were unsuccessful. 1–4 were characterized by single-crystal X-ray structure determinations, 2b and 4 additionally by chemical analysis and 4 also by X-ray powder diffraction, FT-Raman and FT-IR pectroscopy. Application of the PRESTO III sequence allowed for the first time 109Ag MAS NMR investigations of 4 as well as AgF, AgF2, AgMF6 and {1/∞[Ag(I2)]∞}[MF6] (M= As, Sb). Compounds 1 and 2a/b, with the very large counter ions, contain isolated [Ag(Se6)Ag]2+ heterocubane units consisting of a Se6 molecule bicapped by two silver cations (local D3d sym). 3 and 4, with the smaller anions, contain close packed stacked arrays of Se6 rings with Ag+ residing in octahedral holes. Each Ag+ ion coordinates to three selenium atoms of each adjacent Se6 ring. 4 contains [Ag(Se6)+]∞ stacks additionally linked by Ag(2)+ into a two dimensional network. 3 features a remarkable 3-dimensional [Ag2(SbF6)3]- anion held together by strong Sb–F … Ag contacts between the component Ag+ and [SbF6]- ions. The hexagonal channels formed by the [Ag2(SbF6)3]- anions are filled by stacks of [Ag(Se6)+]∞ cations. Overall 1–4 are new members of the rare class of metal complexes of neutral main group elemental clusters, in which the main group element is positively polarized due to coordination to a metal ion. Notably, 1 to 4 include the commonly metastable Se6 molecule as a ligand. The structure, bonding and thermodynamics of 1 to 4 were investigated with the help of quantum chemical calculations (PBE0/TZVPP and (RI-)MP2/TZVPP, in part including COSMO solvation) and Born–Fajans–Haber-cycle calculations. From an analysis of all the available data it appears that the formation of the usually metastable Se6 molecule from grey selenium is thermodynamically driven by the coordination to the Ag+ ions

    Participatory Process for Implementing a Colorectal Cancer Screening Intervention: an Action Plan for Local Sustainability

    Get PDF
    Background: Rigid protocols can hamper translation of evidence-based interventions from research to real-world settings. This investigation aimed to develop procedures for modifying the study protocol of a community-based participatory research (CBPR) project and to analyze the theoretical constructs that underlie this process. Methods: The research project is a dissemination and implementation study of the Educational Program to Increase Colorectal Cancer Screening (EPICS), an evidence-based intervention targeting African Americans in the United States. The study is being conducted in a partnership with community coalitions in 15 different cities. Each site initially presented unique issues that required modification of the study protocol. Results: In order to honor underlying CBPR theory, it was necessary to negotiate protocol changes with the community coalition at each site, while insuring preservation of the core elements of the intervention. Conclusions: We discuss the ways in which this represents a narrowing of the gap between CBPR and traditional research approaches

    Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project.

    Get PDF

    Under pressure: investment behaviour of insurers under different financial and regulatory conditions

    Full text link

    Photodissociation spectroscopy of the Mg+–C2H2 π-complex

    Full text link
    corecore