2,100 research outputs found
Lithium distribution across the membrane of motoneurons in the isolated frog spinal cord
Lithium sensitive microelectrodes were used to investigate the transmembrane distribution of lithium ions (Li+) in motoneurons of the isolated frog spinal cord. After addition of 5 mmol·l–1 LiCl to the bathing solution the extracellular diffusion of Li+ was measured. At a depth of 500 m, about 60 min elapsed before the extracellular Li+ concentration approached that of the bathing solution. Intracellular measurements revealed that Li+ started to enter the cells soon after reaching the motoneuron pool and after up to 120 min superfusion, an intra — to extracellular concentration ratio of about 0.7 was obtained. The resting membrane potential and height of antidromically evoked action potentials were not altered by 5 mmol·l–1 Li+
A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments
The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS
Pressure-dependent EPANET extension
In water distribution systems (WDSs), the available flow at a demand node is dependent on the pressure at that node. When a network is lacking in pressure, not all consumer demands will be met in full. In this context, the assumption that all demands are fully satisfied regardless of the pressure in the system becomes unreasonable and represents the main limitation of the conventional demand driven analysis (DDA) approach to WDS modelling. A realistic depiction of the network performance can only be attained by considering demands to be pressure dependent. This paper presents an extension of the renowned DDA based hydraulic simulator EPANET 2 to incorporate pressure-dependent demands. This extension is termed “EPANET-PDX” (pressure-dependent extension) herein. The utilization of a continuous nodal pressure-flow function coupled with a line search and backtracking procedure greatly enhance the algorithm’s convergence rate and robustness. Simulations of real life networks consisting of multiple sources, pipes, valves and pumps were successfully executed and results are presented herein. Excellent modelling performance was achieved for analysing both normal and pressure deficient conditions of the WDSs. Detailed computational efficiency results of EPANET-PDX with reference to EPANET 2 are included as well
Protective Efficacy of Menthol Propylene Glycol Carbonate Compared to N, N-diethyl-Methylbenzamide Against Mosquito Bites in Northern Tanzania.
The reduction of malaria parasite transmission by preventing human-vector contact is critical in lowering disease transmission and its outcomes. This underscores the need for effective and long lasting arthropod/insect repellents. Despite the reduction in malaria transmission and outcomes in Tanzania, personal protection against mosquito bites is still not well investigated. This study sought to determine the efficacy of menthol propylene glycol carbonate (MR08), Ocimum suave as compared to the gold standard repellent N, N-diethyl-methylbenzamide (DEET), either as a single dose or in combination (blend), both in the laboratory and in the field against Anopheles gambiae s.l and Culex quinquefasciatus. In the laboratory evaluations, repellents were applied on one arm while the other arm of the same individual was treated with a base cream. Each arm was separately exposed in cages with unfed female mosquitoes. Repellents were evaluated either as a single dose or as a blend. Efficacy of each repellent was determined by the number of mosquitoes that landed and fed on treated arms as compared to the control or among them. In the field, evaluations were performed by human landing catches at hourly intervals from 18:00 hr to 01:00 hr. A total of 2,442 mosquitoes were collected during field evaluations, of which 2,376 (97.30%) were An. gambiae s.l while 66 (2.70%) were Cx. quinquefaciatus. MR08 and DEET had comparatively similar protective efficacy ranging from 92% to 100 for both single compound and blends. These findings indicate that MR08 has a similar protective efficacy as DEET for personal protection outside bed nets when used singly and in blends. Because of the personal protection provided by MR08, DEET and blends as topical applicants in laboratory and field situations, these findings suggest that, these repellents could be used efficiently in the community to complement existing tools. Overall, Cx. quinquefasciatus were significantly prevented from blood feeding compared to An. gambiae s.l. The incorporation of these topical repellents for protection against insect bites can be of additional value in the absence or presence of IRS and ITNs coverage. However, a combination of both the physical (bed nets) and the repellent should be used in an integrated manner for maximum protection, especially before going to bed. Additional research is needed to develop repellents with longer duration of protection
Anti-epileptic effect of Ganoderma lucidum polysaccharides by inhibition of intracellular calcium accumulation and stimulation of expression of CaMKII a in epileptic hippocampal neurons
Purpose: To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP), the changes of intracellular calcium and CaMK II a expression in a model of epileptic neurons were investigated.
Method: Primary hippocampal neurons were divided into: 1) Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2) Model group I: neurons were incubated with Mg2+ free medium for 3 hours; 3) Model group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4) GLP group I: neurons were incubated with Mg2+ free medium containing GLP (0.375 mg/ml) for 3 hours; 5) GLP group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II a protein expression was assessed by Western-blot. Ca2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca2+ turnover was observed under a laser scanning confocal microscope.
Results: The CaMK II a expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca2+ fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes.
Conclusion: GLP may inhibit calcium overload and promote CaMK II a expression to protect epileptic neuron
Epidemiology of Coxiella burnetii infection in Africa: a OneHealth systematic review
Background:
Q fever is a common cause of febrile illness and community-acquired pneumonia in resource-limited settings. Coxiella burnetii, the causative pathogen, is transmitted among varied host species, but the epidemiology of the organism in Africa is poorly understood. We conducted a systematic review of C. burnetii epidemiology in Africa from a “One Health” perspective to synthesize the published data and identify knowledge gaps.<p></p>
Methods/Principal Findings:
We searched nine databases to identify articles relevant to four key aspects of C. burnetii epidemiology in human and animal populations in Africa: infection prevalence; disease incidence; transmission risk factors; and infection control efforts. We identified 929 unique articles, 100 of which remained after full-text review. Of these, 41 articles describing 51 studies qualified for data extraction. Animal seroprevalence studies revealed infection by C. burnetii (≤13%) among cattle except for studies in Western and Middle Africa (18–55%). Small ruminant seroprevalence ranged from 11–33%. Human seroprevalence was <8% with the exception of studies among children and in Egypt (10–32%). Close contact with camels and rural residence were associated with increased seropositivity among humans. C. burnetii infection has been associated with livestock abortion. In human cohort studies, Q fever accounted for 2–9% of febrile illness hospitalizations and 1–3% of infective endocarditis cases. We found no studies of disease incidence estimates or disease control efforts.<p></p>
Conclusions/Significance:
C. burnetii infection is detected in humans and in a wide range of animal species across Africa, but seroprevalence varies widely by species and location. Risk factors underlying this variability are poorly understood as is the role of C. burnetii in livestock abortion. Q fever consistently accounts for a notable proportion of undifferentiated human febrile illness and infective endocarditis in cohort studies, but incidence estimates are lacking. C. burnetii presents a real yet underappreciated threat to human and animal health throughout Africa.<p></p>
Using a New Odour-Baited Device to Explore Options for Luring and Killing Outdoor-Biting Malaria Vectors: A Report on Design and Field Evaluation of the Mosquito Landing Box.
Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the 'Mosquito Landing Box' (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P<=0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P<=0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30pm, and between 4:30 and 6:00am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance
Effect of Contemporary Bariatric Surgical Procedures on Type 2 Diabetes Remission. A Population-Based Matched Cohort Study.
OBJECTIVE: The objective of the study is to evaluate the effect of gastric banding, gastric bypass and sleeve gastrectomy on medium to long-term diabetes control in obese participants with type 2 diabetes mellitus. RESEARCH DESIGN AND METHODS: Matched cohort study using primary care electronic health records from the UK Clinical Practice Research Datalink. Obese participants with type 2 diabetes who received bariatric surgery from 2002 to 2014 were compared with matched control participants who did not receive BS. Remission was defined for each year of follow-up as HbA1c <6.5 % and no antidiabetic drugs prescribed. RESULTS: There were 826 obese participants with T2DM who received bariatric surgery including adjustable gastric banding (LAGB) 220; gastric bypass (GBP) 449; or sleeve gastrectomy (SG) 153; with four procedures undefined. Mean HbA1c declined from 8.0 % before BS to 6.5 % in the second postoperative year; proportion with HbA1c <6.5 % (<48 mmol/mol) increased from 17 to 47 %. The proportion of patients in remission was 30 % in the second year, being 20 % for LAGB, 34 % for GBP and 38 % for SG. The adjusted relative rate of remission over the first six postoperative years was 5.97 (4.86 to 7.33, P < 0.001) overall; for LAGB 3.32 (2.27 to 4.86); GBP 7.16 (5.64 to 9.08); and SG 6.82 (5.05 to 9.19). Rates of remission were maintained into the sixth year of follow-up. CONCLUSIONS: Remission of diabetes may continue for up to 6 years after bariatric surgical procedures. Diabetes outcomes are generally more favourable after gastric bypass or sleeve gastrectomy than LAGB
Shady business: understanding the spatial ecology of exophilic Anopheles mosquitoes
Background:
Understanding the ecology of exophilic anophelines is a key step toward developing outdoor control strategies to complement existing indoor control tools against malaria vectors. This study was conducted to assess the movement pattern of exophilic Anopheles mosquitoes between blood meal sources and resting habitats, and the landscape factors dictating their resting habitat choice.
Results:
Resting clay pots were placed at 5 m, 25 m, 50 m, 75 m and 100 m away from isolated focal houses, radiating from them in four directions. The locations of the clay pots represent heterogeneous land cover types at a relatively fine spatial scale in the landscape. The effect of the landscape characters on the number of both female and male anophelines caught was modelled using zero-inflated negative binomial regression with a log link function. A total of 420 Anopheles mosquitoes (353 females and 67 males) belonging to three species; Anopheles arabiensis, Anopheles pharoensis, and Anopheles tenebrosus were caught in the resting clay pots, with An. arabiensis being the dominant species. Canopy cover, distance from the house, and land cover type were the significant landscape characters influencing the aggregation of resting mosquitoes. Both the count and binary models showed that canopy cover was the strongest predictor variable on the counts and the presence of Anopheles mosquitoes in the clay pots. Female Anopheles were most frequently found resting in the pots placed in banana plantations, and at sampling points that were at the greater distances (75 m and 100 m) from the focal house.
Conclusions:
This study showed that exophilic Anopheles mosquitoes tend to rest in shaded areas some distance away from human habitation. These findings are important when targeting mosquitoes outdoors, complementing the existing effort being made to control malaria vectors indoors
Phytochemicals as antibiotic alternatives to promote growth and enhance host health
There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat Autònoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin
- …
