68,598 research outputs found
Predicting Performance of Channel Assignments in Wireless Mesh Networks through Statistical Interference Estimation
Wireless Mesh Network (WMN) deployments are poised to reduce the reliance on
wired infrastructure especially with the advent of the multi-radio
multi-channel (MRMC) WMN architecture. But the benefits that MRMC WMNs offer
viz., augmented network capacity, uninterrupted connectivity and reduced
latency, are depreciated by the detrimental effect of prevalent interference.
Interference mitigation is thus a prime objective in WMN deployments. It is
often accomplished through prudent channel allocation (CA) schemes which
minimize the adverse impact of interference and enhance the network
performance. However, a multitude of CA schemes have been proposed in research
literature and absence of a CA performance prediction metric, which could aid
in the selection of an efficient CA scheme for a given WMN, is often felt. In
this work, we offer a fresh characterization of the interference endemic in
wireless networks. We then propose a reliable CA performance prediction metric,
which employs a statistical interference estimation approach. We carry out a
rigorous quantitative assessment of the proposed metric by validating its CA
performance predictions with experimental results, recorded from extensive
simulations run on an ns-3 802.11g environment
Radio Co-location Aware Channel Assignments for Interference Mitigation in Wireless Mesh Networks
Designing high performance channel assignment schemes to harness the
potential of multi-radio multi-channel deployments in wireless mesh networks
(WMNs) is an active research domain. A pragmatic channel assignment approach
strives to maximize network capacity by restraining the endemic interference
and mitigating its adverse impact on network performance. Interference
prevalent in WMNs is multi-faceted, radio co-location interference (RCI) being
a crucial aspect that is seldom addressed in research endeavors. In this
effort, we propose a set of intelligent channel assignment algorithms, which
focus primarily on alleviating the RCI. These graph theoretic schemes are
structurally inspired by the spatio-statistical characteristics of
interference. We present the theoretical design foundations for each of the
proposed algorithms, and demonstrate their potential to significantly enhance
network capacity in comparison to some well-known existing schemes. We also
demonstrate the adverse impact of radio co- location interference on the
network, and the efficacy of the proposed schemes in successfully mitigating
it. The experimental results to validate the proposed theoretical notions were
obtained by running an exhaustive set of ns-3 simulations in IEEE 802.11g/n
environments.Comment: Accepted @ ICACCI-201
Hybrid stars that masquerade as neutron stars
We show that a hybrid (nuclear + quark matter) star can have a mass-radius
relationship very similar to that predicted for a star made of purely nucleonic
matter. We show this for a generic parameterization of the quark matter
equation of state, and also for an MIT bag model, each including a
phenomenological correction based on gluonic corrections to the equation of
state. We obtain hybrid stars as heavy as 2 M_solar for reasonable values of
the bag model parameters. For nuclear matter, we use the equation of state
calculated by Akmal, Pandharipande, and Ravenhall using many-body techniques.
Both mixed and homogeneous phases of nuclear and quark matter are considered.Comment: 22 pages, LaTeX. Extra figure and explanation adde
Savings Behaviour in the Indian Economy
An attempt has been made in the present exercise to examine the savings behaviour in the Indian Economy in terms of shift in the growth rates of domestic savings, and in magnitude of income elasticity of the domestic savings at the aggregate and disaggregate levels during post economic reform period. The results show that there is no shift in the growth rate of the domestic savings both at aggregate and disaggregate levels during post economic reform period. However there has been acceleration in the growth rates of domestic savings of household and private sectors and deceleration in public sector during 1950--2002. The estimate of constant income elasticity of household savings is found to be more than unity implying that the marginal propensity to save is higher than the average propensity to save, all else equal. Further the constant income elasticity of household savings is moderately higher than that of the income elasticities of domestic savings estimated for private and public sectors during pre economic reform period. The results point out that there is no shift in the magnitude of income elasticity of savings of household, private and public sectors during post economic reform period showing the homogeneity in the size of the income elasticity of domestic savings. Thus the economic reforms that have been initiated in 1992 could not bump up the growth rate of savings and magnitude of the income elasticity of domestic savings both at aggregate and disaggregate levels in the Indian Economy during post economic reform period.
The coexistence of pressure waves in the operation of quartz-crystal shear-wave sensors
It is demonstrated that an AT-cut quartz crystal driven in the thickness-shear-wave mode and typically used as a sensor to monitor the viscoelastic shear-wave properties of a fluid also produce longitudinal pressure waves. Unlike the shear wave, these waves are capable of long-range propagation through the fluid and of reflection at its boundaries, notably at an outer fluid–air interface. They introduce a component into the measured electrical impedance and resonance frequency shift of the crystal, which reflects the setting up of cyclic pressure-wave resonances in the fluid. This has important implications for the practical employment of these crystal as sensors. Under appropriate conditions, as demonstrated for water and n-octane, it is possible to determine the propagating properties of sound waves in a fluid simultaneously with the viscoelastic shear-wave properties. These experiments are supported by an analysis of the appropriate hydrodynamic equations for waves in the crystal–fluid system, which predicts electrical characteristics in close agreement with those found experimentally
Optimisation of distributed feedback laser biosensors
A new integrated optical sensor chip is proposed, based on a modified distributed- feedback (DFB) semiconductor laser. The semiconductor layers of different refractive indices that comprise a laser form the basis of a waveguide sensor, where changes in the refractive index of material at the surface are sensed via changes in the evanescent field of the lasing mode. In DFB lasers, laser oscillation occurs at the Bragg wavelength. Since this is sensitive to the effective refractive index of the optical mode, the emission wavelength is sensitive to the index of a sample on the waveguide surface. Hence, lasers are modelled as planar waveguides and the effective index of the fundamental transverse electric mode is calculated as a function of index and thickness of a thin surface layer using the beam propagation method. We find that an optimised structure has a thin upper cladding layer of ~0.15 mum, which according to this model gives detection limits on test layer index and thickness resolution of 0.1 and 1.57 nm, respectively, a figure which may be further improved using two lasers in an interferometer-type configuration
- …
