237 research outputs found
Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris
The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane1, 2. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic3 and oxic zones. Aerobic methanotrophs, which can assimilate methane, have been considered to be entirely distinct from utilizers of short-chain alkanes, and studies of environments exposed to mixtures of methane and multi-carbon alkanes have assumed that disparate groups of microorganisms are responsible for the metabolism of these gases. Here we describe the mechanism by which a single bacterial strain, Methylocella silvestris, can use methane or propane as a carbon and energy source, documenting a methanotroph that can utilize a short-chain alkane as an alternative to methane. Furthermore, during growth on a mixture of these gases, efficient consumption of both gases occurred at the same time. Two soluble di-iron centre monooxygenase (SDIMO) gene clusters were identified and were found to be differentially expressed during bacterial growth on these gases, although both were required for efficient propane utilization. This report of a methanotroph expressing an additional SDIMO that seems to be uniquely involved in short-chain alkane metabolism suggests that such metabolic flexibility may be important in many environments where methane and short-chain alkanes co-occur
Evaluation and optimization of PCR primers for selective and quantitative detection of marine ANME subclusters involved in sulfate-dependent anaerobic methane oxidation
Since the discovery that anaerobic methanotrophic archaea (ANME) are involved in the anaerobic oxidation of methane coupled to sulfate reduction in marine sediments, different primers and probes specifically targeting the 16S rRNA gene of these archaea have been developed. Microbial investigation of the different ANME subtypes (ANME-1; ANME-2a, b, and c; and ANME-3) was mainly done in sediments where specific subtypes of ANME were highly enriched and methanogenic cell numbers were low. In different sediments with higher archaeal diversity and abundance, it is important that primers and probes targeting different ANME subtypes are very specific and do not detect other ANME subtypes or methanogens that are also present. In this study, primers and probes that were regularly used in AOM studies were tested in silico on coverage and specificity. Most of the previously developed primers and probes were not specific for the ANME subtypes, thereby not reflecting the actual ANME population in complex samples. Selected primers that showed good coverage and high specificity for the subclades ANME-1, ANME-2a/b, and ANME-2c were thoroughly validated using quantitative polymerase chain reaction (qPCR). From these qPCR tests, only certain combinations seemed suitable for selective amplification. After optimization of these primer sets, we obtained valid primer combinations for the selective detection and quantification of ANME-1, ANME-2a/b, and ANME-2c in samples where different ANME subtypes and possibly methanogens could be present. As a result of this work, we propose a standard workflow to facilitate selection of suitable primers for qPCR experiments on novel environmental samples.This research is supported by the Dutch Technology Foundation STW (project 10711), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Research of AJMS is supported by ERC grant (project 323009). Research of PHATand AJMS is supported by the SIAM Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO).info:eu-repo/semantics/publishedVersio
Soil methane sink capacity response to a long-term wildfire chronosequence in Northern Sweden
Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished
The rise and fall of methanotrophy following a deepwater oil-well blowout
The blowout of the Macondo oil well in the Gulf of Mexico in April 2010 injected up to 500,000 tonnes of natural gas, mainly methane, into the deep sea1. Most of the methane released was thought to have been consumed by marine microbes between July and August 20102, 3. Here, we report spatially extensive measurements of methane concentrations and oxidation rates in the nine months following the spill. We show that although gas-rich deepwater plumes were a short-lived feature, water column concentrations of methane remained above background levels throughout the rest of the year. Rates of microbial methane oxidation peaked in the deepwater plumes in May and early June, coincident with a rapid rise in the abundance of known and new methane-oxidizing microbes. At this time, rates of methane oxidation reached up to 5,900 nmol l−1 d−1—the highest rates documented in the global pelagic ocean before the blowout4. Rates of methane oxidation fell to less than 50 nmol l−1 d−1 in late June, and continued to decline throughout the remainder of the year. We suggest the precipitous drop in methane consumption in late June, despite the persistence of methane in the water column, underscores the important role that physiological and environmental factors play in constraining the activity of methane-oxidizing bacteria in the Gulf of Mexico
Global-scale evidence for the refractory nature of riverine black carbon
Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Nature Geoscience 11 (2018): 584-588, doi:10.1038/s41561-018-0159-8.Wildfires and incomplete combustion of fossil fuel produce large amounts of black carbon. Black carbon production and transport are essential components of the carbon cycle. Constraining estimates of black carbon exported from land to ocean is critical, given ongoing changes in land use and climate, which affect fire occurrence and black carbon dynamics. Here, we present an inventory of the concentration and radiocarbon content (∆14C) of particulate black carbon for 18 rivers around the globe. We find that particulate black carbon accounts for about 15.8 ± 0.9% of river particulate organic carbon, and that fluxes of particulate black carbon co-vary with river-suspended sediment, indicating that particulate black carbon export is primarily controlled by erosion. River particulate black carbon is not exclusively from modern sources but is also aged in intermediate terrestrial carbon pools in several high-latitude rivers, with ages of up to 17,000 14C years. The flux-weighted 14C average age of particulate black carbon exported to oceans is 3,700 ± 400 14C years. We estimate that the annual global flux of particulate black carbon to the ocean is 0.017 to 0.037 Pg, accounting for 4 to 32% of the annually produced black carbon. When buried in marine sediments, particulate black carbon is sequestered to form a long-term sink for CO2.A.C. acknowledges financial support from the University of Zurich Forschungskredit Fellowship and the University of Zurich (grant No. STWF-18-026). M.R., S.A. and M.S. acknowledge support from the University Research Priority Projection Global Change and Biodiversity (URPP-GCB). M.Z. acknowledges support from the National Natural Science Foundation of China (No. 41521064). T.E. acknowledges support from the Swiss National Science Foundation (“CAPS-LOCK” and “CAPS-LOCK2” #200021_140850). V.G. acknowledges financial support from an Independent Study Award from the Woods Hole Oceanographic Institution
Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source
The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with 13C-labeled CH4 (13CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, 13C-labeled CO2 (13CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with 13CO2 production and no methanogenesis occurred, excluding TMO as a possible source for 13CO2 production from 13CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment.We thank Douwe Bartstra (Vereniging tot Behoud van de Gasbronnen in Noord-Holland, The Netherlands), Carla Frijters (Paques BV, The Netherlands) and Teun Veuskens (Laboratory of Microbiology, WUR, The Netherlands) for sampling; Martin Meirink (Hoogheemraadschap Hollands Noorderkwartier, The Netherlands) for physicochemical data; Freek van Sambeek for providing Figure 1; Lennart Kleinjans (Laboratory of Microbiology, WUR, The Netherlands) for help with pyrosequencing analysis, Irene Sánchez-Andrea (Laboratory of Microbiology, WUR, The Netherlands) for proof-reading and Katharina Ettwig (Department of Microbiology, Radboud University Nijmegen, The Netherlands) for providing M. oxyfera DNA. We want to thank all anonymous reviewers for valuable contributions. This research is supported by the Dutch Technology Foundation STW (project 10711), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Research of AJMS is supported by ERC grant (project 323009) and the Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO)
Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps
Natural gas seeps contribute to global climate change by releasing substantial amounts of the potent greenhouse gas methane and other climate-active gases including ethane and propane to the atmosphere. However, methanotrophs, bacteria capable of utilising methane as the sole source of carbon and energy, play a significant role in reducing the emissions of methane from many environments. Methylocella-like facultative methanotrophs are a unique group of bacteria that grow on other components of natural gas (i.e. ethane and propane) in addition to methane but a little is known about the distribution and activity of Methylocella in the environment. The purposes of this study were to identify bacteria involved in cycling methane emitted from natural gas seeps and, most importantly, to investigate if Methylocella-like facultative methanotrophs were active utilisers of natural gas at seep sites
Perspectives and Integration in SOLAS Science
Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm.
Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency.
The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling.
Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter
The Abundance of Pink-Pigmented Facultative Methylotrophs in the Root Zone of Plant Species in Invaded Coastal Sage Scrub Habitat
Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C1 compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 102 to 105 CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems
Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment
Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is assumed to be a syntrophic process, in which methanotrophic archaea produce an interspecies electron carrier (IEC), which is subsequently utilized by sulfate-reducing bacteria. In this paper, six methanogenic substrates are tested as candidate-IECs by assessing their effect on AOM and SR by an anaerobic methanotrophic enrichment. The presence of acetate, formate or hydrogen enhanced SR, but did not inhibit AOM, nor did these substrates trigger methanogenesis. Carbon monoxide also enhanced SR but slightly inhibited AOM. Methanol did not enhance SR nor did it inhibit AOM, and methanethiol inhibited both SR and AOM completely. Subsequently, it was calculated at which candidate-IEC concentrations no more Gibbs free energy can be conserved from their production from methane at the applied conditions. These concentrations were at least 1,000 times lower can the final candidate-IEC concentration in the bulk liquid. Therefore, the tested candidate-IECs could not have been produced from methane during the incubations. Hence, acetate, formate, methanol, carbon monoxide, and hydrogen can be excluded as sole IEC in AOM coupled to SR. Methanethiol did inhibit AOM and can therefore not be excluded as IEC by this study
- …
