15,714 research outputs found
Zero-Convex Functions, Perturbation Resilience, and Subgradient Projections for Feasibility-Seeking Methods
The convex feasibility problem (CFP) is at the core of the modeling of many
problems in various areas of science. Subgradient projection methods are
important tools for solving the CFP because they enable the use of subgradient
calculations instead of orthogonal projections onto the individual sets of the
problem. Working in a real Hilbert space, we show that the sequential
subgradient projection method is perturbation resilient. By this we mean that
under appropriate conditions the sequence generated by the method converges
weakly, and sometimes also strongly, to a point in the intersection of the
given subsets of the feasibility problem, despite certain perturbations which
are allowed in each iterative step. Unlike previous works on solving the convex
feasibility problem, the involved functions, which induce the feasibility
problem's subsets, need not be convex. Instead, we allow them to belong to a
wider and richer class of functions satisfying a weaker condition, that we call
"zero-convexity". This class, which is introduced and discussed here, holds a
promise to solve optimization problems in various areas, especially in
non-smooth and non-convex optimization. The relevance of this study to
approximate minimization and to the recent superiorization methodology for
constrained optimization is explained.Comment: Mathematical Programming Series A, accepted for publicatio
On the existence of a neutral region
Consider a given space, e.g., the Euclidean plane, and its decomposition into
Voronoi regions induced by given sites. It seems intuitively clear that each
point in the space belongs to at least one of the regions, i.e., no neutral
region can exist. As simple counterexamples show this is not true in general,
but we present a simple necessary and sufficient condition ensuring the
non-existence of a neutral region. We discuss a similar phenomenon concerning
recent variations of Voronoi diagrams called zone diagrams, double zone
diagrams, and (double) territory diagrams. These objects are defined in a
somewhat implicit way and they also induce a decomposition of the space into
regions. In several works it was claimed without providing a proof that some of
these objects induce a decomposition in which a neutral region must exist. We
show that this assertion is true in a wide class of cases but not in general.
We also discuss other properties related to the neutral region, among them a
one related to the concentration of measure phenomenon.Comment: 22 pages, 9 figure
The projector algorithm: a simple parallel algorithm for computing Voronoi diagrams and Delaunay graphs
The Voronoi diagram is a certain geometric data structure which has numerous
applications in various scientific and technological fields. The theory of
algorithms for computing 2D Euclidean Voronoi diagrams of point sites is rich
and useful, with several different and important algorithms. However, this
theory has been quite steady during the last few decades in the sense that no
essentially new algorithms have entered the game. In addition, most of the
known algorithms are serial in nature and hence cast inherent difficulties on
the possibility to compute the diagram in parallel. In this paper we present
the projector algorithm: a new and simple algorithm which enables the
(combinatorial) computation of 2D Voronoi diagrams. The algorithm is
significantly different from previous ones and some of the involved concepts in
it are in the spirit of linear programming and optics. Parallel implementation
is naturally supported since each Voronoi cell can be computed independently of
the other cells. A new combinatorial structure for representing the cells (and
any convex polytope) is described along the way and the computation of the
induced Delaunay graph is obtained almost automatically.Comment: This is a major revision; re-organization and better presentation of
some parts; correction of several inaccuracies; improvement of some proofs
and figures; added references; modification of the title; the paper is long
but more than half of it is composed of proofs and references: it is
sufficient to look at pages 5, 7--11 in order to understand the algorith
- …
