16,961 research outputs found
Afterglow lightcurves, viewing angle and the jet structure of gamma-ray bursts
Gamma ray bursts are often modelled as jet-like outflows directed towards the
observer; the cone angle of the jet is then commonly inferred from the time at
which there is a steepening in the power-law decay of the afterglow. We
consider an alternative model in which the jet has a beam pattern where the
luminosity per unit solid angle (and perhaps also the initial Lorentz factor)
decreases smoothly away from the axis, rather than having a well-defined cone
angle within which the flow is uniform. We show that the break in the afterglow
light curve then occurs at a time that depends on the viewing angle. Instead of
implying a range of intrinsically different jets - some very narrow, and others
with similar power spread over a wider cone - the data on afterglow breaks
could be consistent with a standardized jet, viewed from different angles. We
discuss the implication of this model for the luminosity function.Comment: Corrected typo in Eq. 1
Analysis of pressure distortion testing
The development of a distortion methodology, method D, was documented, and its application to steady state and unsteady data was demonstrated. Three methodologies based upon DIDENT, a NASA-LeRC distortion methodology based upon the parallel compressor model, were investigated by applying them to a set of steady state data. The best formulation was then applied to an independent data set. The good correlation achieved with this data set showed that method E, one of the above methodologies, is a viable concept. Unsteady data were analyzed by using the method E methodology. This analysis pointed out that the method E sensitivities are functions of pressure defect level as well as corrected speed and pattern
Adaptation of a general circulation model to ocean dynamics
A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented
Family Effects in Youth Employment
The authors begin with the hypothesis that parental contacts play a major role in finding jobs for youth. This hypothesis is tested with a model of youth employment that includes characteristics of other family members in addition to a large set of control variables. Particular attention is paid to parental characteristics that might indicate a parent's ability to assist the youth in finding a job, including occupation, industry and education. The effects of such variables are generally not significant and do not support the initial hypothesis. However, the employment probability of a youth is significantly affected by the presence of employed siblings, indicating the presence of some intrafamily effects.
Importance of an Astrophysical Perspective for Textbook Relativity
The importance of a teaching a clear definition of the ``observer'' in
special relativity is highlighted using a simple astrophysical example from the
exciting current research area of ``Gamma-Ray Burst'' astrophysics. The example
shows that a source moving relativistically toward a single observer at rest
exhibits a time ``contraction'' rather than a ``dilation'' because the light
travel time between the source and observer decreases with time. Astrophysical
applications of special relativity complement idealized examples with real
applications and very effectively exemplify the role of a finite light travel
time.Comment: 5 pages TeX, European Journal of Physics, in pres
Events in the life of a cocoon surrounding a light, collapsar jet
According to the collapsar model, gamma-ray bursts are thought to be produced
in shocks that occur after the relativistic jet has broken free from the
stellar envelope. If the mass density of the collimated outflow is less than
that of the stellar envelope, the jet will then be surrounded by a cocoon of
relativistic plasma. This material would itself be able to escape along the
direction of least resistance, which is likely to be the rotation axis of the
stellar progenitor, and accelerate in approximately the same way as an
impulsive fireball. We discuss how the properties of the stellar envelope have
a decisive effect on the appearance of a cocoon propagating through it. The
relativistic material that accumulated in the cocoon would have enough kinetic
energy to substantially alter the structure of the relativistic outflow, if not
in fact provide much of the observed explosive power. Shock waves within this
plasma can produce gamma-ray and X-ray transients, in addition to the standard
afterglow emission that would arise from the deceleration shock of the cocoon
fireball.Comment: 16 pages, 5 figures, slightly revised version, accepted for
publication in MNRA
Predictions for The Very Early Afterglow and The Optical Flash
According to the internal-external shocks model for -ray bursts
(GRBs), the GRB is produced by internal shocks within a relativistic flow while
the afterglow is produced by external shocks with the ISM. We explore the early
afterglow emission. For short GRBs the peak of the afterglow will be delayed,
typically, by few dozens of seconds after the burst. For long GRBs the early
afterglow emission will overlap the GRB signal. We calculate the expected
spectrum and the light curves of the early afterglow in the optical, X-ray and
-ray bands. These characteristics provide a way to discriminate
between late internal shocks emission (part of the GRB) and the early afterglow
signal. If such a delayed emission, with the characteristics of the early
afterglow, will be detected it can be used both to prove the internal shock
scenario as producing the GRB, as well as to measure the initial Lorentz factor
of the relativistic flow. The reverse shock, at its peak, contains energy which
is comparable to that of the GRB itself, but has a much lower temperature than
that of the forward shock so it radiates at considerably lower frequencies. The
reverse shock dominates the early optical emission, and an optical flash
brighter than 15th magnitude, is expected together with the forward shock peak
at x-rays or -rays. If this optical flash is not observed, strong
limitations can be put on the baryonic contents of the relativistic shell
deriving the GRBs, leading to a magnetically dominated energy density.Comment: 23 pages including 4 figure
Groups with context-free co-word problem
The class of co-context-free groups is studied. A co-context-free group is defined as one whose coword
problem (the complement of its word problem) is context-free. This class is larger than the
subclass of context-free groups, being closed under the taking of finite direct products, restricted
standard wreath products with context-free top groups, and passing to finitely generated subgroups
and finite index overgroups. No other examples of co-context-free groups are known. It is proved
that the only examples amongst polycyclic groups or the Baumslag–Solitar groups are virtually
abelian. This is done by proving that languages with certain purely arithmetical properties cannot
be context-free; this result may be of independent interest
- …
