19 research outputs found
Diving of Great Shearwaters (Puffinus gravis) in Cold and Warm Water Regions of the South Atlantic Ocean
BACKGROUND: Among the most widespread seabirds in the world, shearwaters of the genus Puffinus are also some of the deepest diving members of the Procellariiformes. Maximum diving depths are known for several Puffinus species, but dive depths or diving behaviour have never been recorded for great shearwaters (P. gravis), the largest member of this genus. This study reports the first high sampling rate (2 s) of depth and diving behaviour for Puffinus shearwaters. METHODOLOGY/PRINCIPAL FINDINGS: Time-depth recorders (TDRs) were deployed on two female great shearwaters nesting on Inaccessible Island in the South Atlantic Ocean, recording 10 consecutive days of diving activity. Remote sensing imagery and movement patterns of 8 males tracked by satellite telemetry over the same period were used to identify probable foraging areas used by TDR-equipped females. The deepest and longest dive was to 18.9 m and lasted 40 s, but most (>50%) dives were <2 m deep. Diving was most frequent near dawn and dusk, with <0.5% of dives occurring at night. The two individuals foraged in contrasting oceanographic conditions, one in cold (8 to 10°C) water of the Sub-Antarctic Front, likely 1000 km south of the breeding colony, and the other in warmer (10 to 16°C) water of the Sub-tropical Frontal Zone, at the same latitude as the colony, possibly on the Patagonian Shelf, 4000 km away. The cold water bird spent fewer days commuting, conducted four times as many dives as the warm water bird, dived deeper on average, and had a greater proportion of bottom time during dives. CONCLUSIONS/SIGNIFICANCE: General patterns of diving activity were consistent with those of other shearwaters foraging in cold and warm water habitats. Great shearwaters are likely adapted to forage in a wide range of oceanographic conditions, foraging mostly with shallow dives but capable of deep diving
Annual and spatial variation in the Abra community in Liverpool Bay
Based on 12 years of sampling in Liverpool Bay a number of spatial and temporal variants of the Abra community can be recognised: a) species poor localities that are consistently dominated by Pectinaria koreni or Abra alba ; b) unstable fluid muds with ephemeral recruitments of Pectinaria ; c) species rich localities with a range of alternative dominants; d) heterogeneous offshore localities that are temporarily colonised by Abra community species. General colonisation events occurred in 1972 and 1978 which may be synchronised with events elsewhere in the North Sea
Marine Litter as Habitat and Dispersal Vector
Floating anthropogenic litter provides habitat for a diverse community of marine organisms. A total of 387 taxa, including pro- and eukaryotic micro-organisms, seaweeds and invertebrates, have been found rafting on floating litter in all major oceanic regions. Among the invertebrates, species of bryozoans, crustaceans, molluscs and cnidarians are most frequently reported as rafters on marine litter. Microorganisms are also ubiquitous on marine litter although the composition of the microbial community seems to depend on specific substratum characteristics such as the polymer type of floating plastic items. Sessile suspension feeders are particularly well-adapted to the limited autochthonous food resources on artificial floating substrata and an extended planktonic larval development seems to facilitate colonization of floating litter at sea. Properties of floating litter, such as size and surface rugosity, are crucial for colonization by marine organisms and the subsequent succession of the rafting community. The rafters themselves affect substratum characteristics such as floating stability, buoyancy, and degradation. Under the influence of currents and winds marine litter can transport associated organisms over extensive distances. Because of the great persistence (especially of plastics) and the vast quantities of litter in the world’s oceans, rafting dispersal has become more prevalent in the marine environment, potentially facilitating the spread of invasive species
Horse mussel reef ecosystem services: evidence for a whelk nursery habitat supporting a shellfishery
Abstract 2682: Small molecule targeting the lipoic acid post-translational modification impacts proliferation of colorectal and PIK3CA-mutant cell lines
Abstract
To identify novel therapeutic targets, we utilize the PRISM platform, a multiplexed cell line viability technology of 500 solid tumor cell lines and correlate responses to functional genomic and baseline genetic data. We describe ESD0140656, a small molecule with selective anti-proliferative effect on colorectal and PIK3CA-mutant cell lines. Response to ESD0140656 is correlated to sensitivity to CRISPR/Cas9 KO of components of the protein lipoylation pathway and OGDH complex members, which catalyze a step of the TCA cycle. Lipoylation is a rare post-translational modification attached to just four enzymes in humans, including the OGDH complex. Knockout of the protein that transfers lipoic acid to these four enzymes (LIPT1) sensitizes cells to ESD0140656, and ESD0140656 treatment leads to reduction of lipoic acid in cells. These results suggest ESD0140656 targets the lipoylation pathway and may represent a novel therapeutic angle for colorectal and PIK3CA-mutant tumors.
Citation Format: Laura Doherty, Tenzin Sangpo, Peter Tsvetkov, John Davis, Navid Dianati, Wolfgang Schwede, Katja Zimmermann, Laura Evans, Aldo Amatucci, Henrik Seidel, Atanas Kamburov, Gizem Akcay, Todd Golub, Ashley Eheim, Nils Burkhardt, Knut Eis, Sven Christian, Matt Rees, Jennifer Roth. Small molecule targeting the lipoic acid post-translational modification impacts proliferation of colorectal and PIK3CA-mutant cell lines [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 2682.</jats:p
Nitrogen accumulation by conifer seedlings and competitor species from 15nitrogen-labeled controlled-release fertilizer
Synchronicity, periodicity and bimodality in inter-annual tree seed production along an elevation gradient
Strict mast fruiting for a tropical dipterocarp tree: A demographic cost-benefit analysis of delayed reproduction and seed predation
Contains fulltext :
92377.pdf (publisher's version ) (Closed access)12 p
