75 research outputs found
Genome-wide analysis identifies 12 loci influencing human reproductive behavior.
The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits
Means to an End: An Assessment of the Status-blind Approach to Protecting Undocumented Worker Rights
This article applies the tenets of bureaucratic incorporation theory to an investigation of bureaucratic decision making in labor standards enforcement agencies (LSEAs), as they relate to undocumented workers. Drawing on 25 semistructured interviews with high-level officials in San Jose and Houston, I find that bureaucrats in both cities routinely evade the issue of immigration status during the claims-making process, and directly challenge employers’ attempts to use the undocumented status of their workers to deflect liability. Respondents offer three institutionalized narratives for this approach: (1) to deter employer demand for undocumented labor, (2) the conviction that the protection of undocumented workers is essential to the agency’s ability to regulate industry standards for all workers, and (3) to clearly demarcate the agency’s jurisdictional boundaries to preserve institutional autonomy and scarce resources. Within this context, enforcing the rights of undocumented workers becomes simply an institutional means to an end
Functional MRI and Diffusion Tensor Imaging of Brain Reorganization After Experimental Stroke
The potential of the adult brain to reorganize after ischemic injury is critical for functional recovery and provides a significant target for therapeutic strategies to promote brain repair. Despite the accumulating evidence of brain plasticity, the interaction and significance of morphological and physiological modifications in post-stroke brain tissue remain mostly unclear. Neuroimaging techniques such as functional MRI (fMRI) and diffusion tensor imaging (DTI) enable in vivo assessment of the spatial and temporal pattern of functional and structural changes inside and outside ischemic lesion areas. This can contribute to the elucidation of critical aspects in post-stroke brain remodeling. Task/stimulus-related fMRI, resting-state fMRI, or pharmacological MRI enables direct or indirect measurement of neuronal activation, functional connectivity, or neurotransmitter system responses, respectively. DTI allows estimation of the structural integrity and connectivity of white matter tracts. Together, these MRI methods provide an unprecedented means to (a) measure longitudinal changes in tissue structure and function close by and remote from ischemic lesion areas, (b) evaluate the organizational profile of neural networks after stroke, and (c) identify degenerative and restorative processes that affect post-stroke functional outcome. Besides, the availability of MRI in clinical institutions as well as research laboratories provides an optimal basis for translational research on stroke recovery. This review gives an overview of the current status and perspectives of fMRI and DTI applications to study brain reorganization in experimental stroke models
Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An updated analysis with a focus on low- and middle-income countries
Background
To develop updated estimates in response to new exposure and exposure-response data of the burden of diarrhoea, respiratory infections, malnutrition, schistosomiasis, malaria, soil-transmitted helminth infections and trachoma from exposure to inadequate drinking-water, sanitation and hygiene behaviours (WASH) with a focus on low- and middle-income countries.
Methods
For each of the analysed diseases, exposure levels with both sufficient global exposure data for 2016 and a matching exposure-response relationship were combined into population-attributable fractions. Attributable deaths and disability-adjusted life years (DALYs) were estimated for each disease and, for most of the diseases, by country, age and sex group separately for inadequate water, sanitation and hygiene behaviours and for the cluster of risk factors. Uncertainty estimates were computed on the basis of uncertainty surrounding exposure estimates and relative risks.
Findings
An estimated 829,000 WASH-attributable deaths and 49.8 million DALYs occurred from diarrhoeal diseases in 2016, equivalent to 60% of all diarrhoeal deaths. In children under 5 years, 297,000 WASH-attributable diarrhoea deaths occurred, representing 5.3% of all deaths in this age group. If the global disease burden from different diseases and several counterfactual exposure distributions was combined it would amount to 1.6 million deaths, representing 2.8% of all deaths, and 104.6 million DALYs in 2016.
Conclusions
Despite recent declines in attributable mortality, inadequate WASH remains an important determinant of global disease burden, especially among young children. These estimates contribute to global monitoring such as for the Sustainable Development Goal indicator on mortality from inadequate WASH
Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression
Abstract
Purpose: Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC. Neuroblastoma is a lethal tumor in which the MYC homologue MYCN, and ODC1, the rate-limiting enzyme in polyamine synthesis, are frequently deregulated so we tested optimized polyamine depletion regimens for activity against neuroblastoma.
Experimental Design: We used complementary transgenic and xenograft-bearing neuroblastoma models to assess polyamine antagonists. We investigated difluoromethylornithine (DFMO; an inhibitor of Odc, the rate-limiting enzyme in polyamine synthesis), SAM486 (an inhibitor of Amd1, the second rate-limiting enzyme), and celecoxib (an inducer of Sat1 and polyamine catabolism) in both the preemptive setting and in the treatment of established tumors. In vitro assays were performed to identify mechanisms of activity.
Results: An optimized polyamine antagonist regimen using DFMO and SAM486 to inhibit both rate-limiting enzymes in polyamine synthesis potently blocked neuroblastoma initiation in transgenic mice, underscoring the requirement for polyamines in MYC-driven oncogenesis. Furthermore, the combination of DFMO with celecoxib was found to be highly active, alone, and combined with numerous chemotherapy regimens, in regressing established tumors in both models, including tumors harboring highest risk genetic lesions such as MYCN amplification, ALK mutation, and TP53 mutation with multidrug resistance.
Conclusions: Given the broad preclinical activity demonstrated by polyamine antagonist regimens across diverse in vivo models, clinical investigation of such approaches in neuroblastoma and potentially other MYC-driven tumors is warranted. Clin Cancer Res; 22(17); 4391–404. ©2016 AACR.</jats:p
An automated 13.5 hour system for scalable diagnosis and acute management guidance for genetic diseases
While many genetic diseases have effective treatments, they frequently progress rapidly to severe morbidity or mortality if those treatments are not implemented immediately. Since front-line physicians frequently lack familiarity with these diseases, timely molecular diagnosis may not improve outcomes. Herein we describe Genome-to-Treatment, an automated, virtual system for genetic disease diagnosis and acute management guidance. Diagnosis is achieved in 13.5 h by expedited whole genome sequencing, with superior analytic performance for structural and copy number variants. An expert panel adjudicated the indications, contraindications, efficacy, and evidence-of-efficacy of 9911 drug, device, dietary, and surgical interventions for 563 severe, childhood, genetic diseases. The 421 (75%) diseases and 1527 (15%) effective interventions retained are integrated with 13 genetic disease information resources and appended to diagnostic reports ( https://gtrx.radygenomiclab.com ). This system provided correct diagnoses in four retrospectively and two prospectively tested infants. The Genome-to-Treatment system facilitates optimal outcomes in children with rapidly progressive genetic diseases
Preschool screen media exposure, executive functions and symptoms of inattention/hyperactivity
- …
