980 research outputs found

    Advances in Hybrid Molecular/Continuum Methods for Micro and Nano Flows

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Next generation uid ow systems are likely to depend on micro or nano scale dynamics that make the system behaviour multiscale in both space and time. There may be strong or weak separation between the length scales and between the time scales in di erent parts of the ow, and these scale-separations may also vary in space and time. In this paper we discuss a practical approach to improving the e ciency of hybrid particle/continuum models of such multiscale ows. Our focus is on adapting the solution method to the local scale-separation conditions, in order to balance compu- tational e ciency with accuracy. We compare results from our new hybridisation in space and time with full molecular simulations of benchmark nanoscale ows

    Gas dynamics at the micro-scale: A review of progress in hydrodynamic modelling

    Get PDF
    This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.We review some recent developments in the modelling of non-equilibrium (rarefied) gas flows at the micro- and nano-scale using extended hydrodynamic models. Following a brief exposition of the challenges that non-equilibrium poses in micro- and nano-scale gas flows, we outline the field of extended hydrodynamics, describing the effective abandonment of Burnett-type models in favour of high-order regularised moment equations. We then review the boundary conditions required if the conventional Navier-Stokes-Fourier (NSF) fluid dynamic model is applied at the micro scale, describing how 2nd-order Maxwelltype conditions can be used to compensate for some of the non-equilibrium flow behaviour near solid surfaces. While extended hydrodynamics is not yet widely-used for real flow problems because of its inherent complexity, we finish with an outline of recent ‘phenomenological extended hydrodynamics’ (PEH) techniques — essentially the NSF equations scaled to incorporate non-equilibrium behaviour close to solid surfaces — which offer promise as engineering models.This work is funded in the UK by the Engineering and Physical Sciences Research Council through grants EP/F002467/1, EP/D07455X/1, EP/D007488/1 and EP/F028865/1

    A New Heterogeneous Multiscale Technique for Microscale Gas Flows

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.We present a new hybrid method for dilute gas flows that heterogeneously couples a continuumfluid description to the direct simulation Monte Carlo (DSMC) method. A continuum-fluid model is applied across the entire domain, while DSMC is applied in spatially-distributed micro regions. Using a field-wise coupling approach, DSMC sub-domains of any size can be placed at any location. The sub-domain arrangement can therefore be adjusted for each problem to capture non-equilibrium behaviour both close to bounding walls and in the bulk. We demonstrate our method on a test case of high-speed micro Couette flow. With large differences in wall velocity, significant viscous heating is present, and so our coupling considers the transfer of both momentum and heat. Our hybrid results are validated against a pure DSMC simulation, and the results show that the method can deal with missing boundary and constitutive information

    Exploiting timescale separation in micro and nano flows

    Get PDF
    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.In this paper we describe how timescale separation in micro/nano flows can be exploited for computational acceleration. A modified version of the seamless heterogenous multiscale method (SHMM) is proposed: a multi-step SHMM. This maintains the main advantages of SHMM (e.g., re-initialisation of micro data is not required; temporal gearing (computational speed-up) is easily controlled; and it is applicable to full and intermediate degrees of timescale separation) while improving on accuracy and greatly reducing the number of macroscopic computations and micro/macro coupling instances required. The improved accuracy of the multi-step SHMM is demonstrated for two canonical one-dimensional transient flows (oscillatory Poiseuille and oscillatory Couette flow) and for rarefied-gas oscillatory Poiseuille flow.This research is financially supported by the EPSRC Programme Grant EP/I011927/1

    Coupled continuum hydrodynamics and molecular dynamics method for multiscale simulation

    Get PDF
    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.We present a new hybrid methodology for carrying out multiscale simulations of flow problems lying between continuum hydrodynamics and molecular dynamics, where macro/micro lengthscale separation exists only in one direction. Our multiscale method consists of an iterative technique that couples mass and momentum flux between macro and micro domains, and is tested on a converging/diverging nanochannel case containing flow of a simple Lennard-Jones liquid. Comparisons agree well with a full MD simulation of the same test case.EPSRC Programme Grant EP/I011927/

    Quantitative perfusion MRI of tumor model in mouse

    Get PDF
    INTRODUCTION: Perfusion in the body provides valuable information about physiological status and disease progression. Measuring perfusion in tumors is considered important with the recognition of angiogenesis, the process of developing new blood vessels, as a key element in the pathophysiology of tumor growth and metastasis1. Many studies have used Gd contrast agents to evaluate tumor blood flow and vasculature but quantification has been complicated and model/agent dependent. Arterial spin labeling (ASL) is a noninvasive and quantitative technique that measures perfusion by magnetically labeling water as a freely diffusible endogenous tracer. Application of ASL to measure perfusion in tumor is a challenge due to the low perfusion values and artifacts caused by …postprintThe 19th Annual Meeting & Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2011), Montréal, QC., 7-13 May 2011. In Proceedings of the International Society for Magnetic Resonance in Medicine, 2011, v. 19, p. 108

    UK Breastfeeding Helpline support: An investigation of influences upon satisfaction

    Get PDF
    Background Incentive or reward schemes are becoming increasingly popular to motivate healthy lifestyle behaviours. In this paper, insights from a qualitative and descriptive study to investigate the uptake, impact and meanings of a breastfeeding incentive intervention integrated into an existing peer support programme (Star Buddies) are reported. The Star Buddies service employs breastfeeding peer supporters to support women across the ante-natal, intra-partum and post-partum period. Methods In a disadvantaged area of North West England, women initiating breastfeeding were recruited by peer supporters on the postnatal ward or soon after hospital discharge to participate in an 8 week incentive (gifts and vouchers) and breastfeeding peer supporter intervention. In-depth interviews were conducted with 26 women participants who engaged with the incentive intervention, and a focus group was held with the 4 community peer supporters who delivered the intervention. Descriptive analysis of routinely collected data for peer supporter contacts and breastfeeding outcomes before and after the incentive intervention triangulated and retrospectively provided the context for the qualitative thematic analysis. Results A global theme emerged of 'incentives as connectors', with two sub-themes of 'facilitating connections' and 'facilitating relationships and wellbeing'. The incentives were linked to discussion themes and gift giving facilitated peer supporter access for proactive weekly home visits to support women. Regular face to face contacts enabled meaningful relationships and new connections within and between the women, families, peer supporters and care providers to be formed and sustained. Participants in the incentive scheme received more home visits and total contact time with peer supporters compared to women before the incentive intervention. Full participation levels and breastfeeding rates at 6-8 weeks were similar for women before and after the incentive intervention. Conclusion The findings suggest that whilst the provision of incentives might not influence women's intentions or motivations to breastfeed, the connections forged provided psycho-social benefits for both programme users and peer supporters

    Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo

    Get PDF
    Whether neurons can restore their original connectivity patterns during circuit repair is unclear. Taking advantage of the regenerative capacity of zebrafish retina, we show here the remarkable specificity by which surviving neurons reassemble their connectivity upon regeneration of their major input. H3 horizontal cells (HCs) normally avoid red and green cones, and prefer ultraviolet over blue cones. Upon ablation of the major (ultraviolet) input, H3 HCs do not immediately increase connectivity with other cone types. Instead, H3 dendrites retract and re-extend to contact new ultraviolet cones. But, if regeneration is delayed or absent, blue-cone synaptogenesis increases and ectopic synapses are made with red and green cones. Thus, cues directing synapse specificity can be maintained following input loss, but only within a limited time period. Further, we postulate that signals from the major input that shape the H3 HC's wiring pattern during development persist to restrict miswiring after damage

    Environmental Factors in the Relapse and Recurrence of Inflammatory Bowel Disease:A Review of the Literature

    Get PDF
    The causes of relapse in patients with Crohn's disease (CD) and ulcerative colitis (UC) are largely unknown. This paper reviews the epidemiological and clinical data on how medications (non-steroidal anti-inflammatory drugs, estrogens and antibiotics), lifestyle factors (smoking, psychological stress, diet and air pollution) may precipitate clinical relapses and recurrence. Potential biological mechanisms include: increasing thrombotic tendency, imbalances in prostaglandin synthesis, alterations in the composition of gut microbiota, and mucosal damage causing increased permeability
    corecore