4,553 research outputs found

    The Galaxy-Halo/Subhalo connection: Mass relations and implications for some satellite occupational distributions

    Full text link
    We infer the local stellar-to-halo/subhalo mass relations (MRs) for central and satellite galaxies separately. We constraint this relations by using several combinations of observational data, consisting of the total galaxy stellar mass function, its decomposition into centrals and satellites, and the projected two-point correlation functions measured in different stellar mass bins. The differences among the resulting MRs are within the model-fit uncertainties (which are very small, smaller than the intrinsic scatter between galaxy and halo mass), no matter what combination of data are used. We also constrain the values of the intrinsic scatter around the central-halo (CH) and satellite-subhalo (SS) MRs assuming them to be constant: sigma_c= 0.168+-0.051 dex and sigma_s = 0.172+-0.057 dex, respectively. The CH and SS MRs are actually different, in particular when we take the subhalo mass at the present-day epoch instead of at their accretion time. We calculate several population statistics. We find that the central galaxy is not on average within the mass distribution of the most-massive satellite, even for cluster-sized halos, i.e., centrals are not a mere realization of the high-end of the satellite mass function; however for > 3x10^13 msun halos, ~15% of centrals could be. We also find that the probabilities of MW-sized halos of having N Magellanic-Clouds (MCs)-sized satellites agree well with observational measures; for a halo mass of 2x10^12 msun, the probability to have 2 MCs is 5.4%, but if we exclude those systems with satellites larger than the MCs, then the probability decreases to <2.2%.Comment: 18 pages, 7 figures. Accepted for publication in ApJ. Some references were adde

    Review of Conformally Flat Approximation for Binary Neutron Star Initial Conditions

    Get PDF
    The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here we review the status of the original formulation of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasi-circular orbits. We illustrate the use of this approximation for orbiting neutron stars in the quasi-circular orbit approximation to demonstrate the equation of state dependence of these initial conditions and how they might affect the emergent gravitational wave frequency as the stars approach the innermost stable circular orbit.Comment: 22 pages, 12 figures, revised as per referee recommendation

    Introduction to the problem of rocket-powered aircraft performance

    Get PDF
    An introduction to the problem of determining the fundamental limitations on the performance possibilities of rocket-powered aircraft is presented. Previous material on the subject is reviewed and given in condensed form along with supplementary analyses. Some of the problems discussed are: 1) limiting velocity of a rocket projectile; 2) limiting velocity of a rocket jet; 3) jet efficiency; 4) nozzle characteristics; 5) maximum attainable altitudes; 6) ranges. Formulas are presented relating the performance of a rocket-powered aircraft to basic weight and nozzle dimensional parameters. The use of these formulas is illustrated by their application to the special case of a nonlifting rocket projectile

    Efficient fe strategies for springback prediction – material modelling and computational aspects

    Get PDF
    Blanks of sheet metal are characterized by an intrinsic plastic anisotropic behaviour resulting from the plastic deformation during the rolling of sheets. Another type of anisotropy is elastic anisotropy which might be essential especially during elastic recovery processes during unloading after forming and springback. Thus, this paper focuses on the study of the sensitivity of the amount of springback in unconstrained bending with respect to elastic anisotropy. A finite strain constitutive model for evolving elastic and plastic anisotropy combining nonlinear isotropic and kinematic hardening is discussed. The evolution of elastic anisotropy is described by representing the Helmholtz free energy as a function of a family of evolving structure tensors. In addition, plastic anisotropy is modelled via the dependence of the yield surface on the same family of structure tensors. The constitutive equations of the model are implemented as a user material subroutine UMAT in the commercial solver ABAQUS/Standard, which is then applied to the simulation of springback in unconstrained bending

    Self-trapping at the liquid vapor critical point

    Full text link
    Experiments suggest that localization via self-trapping plays a central role in the behavior of equilibrated low mass particles in both liquids and in supercritical fluids. In the latter case, the behavior is dominated by the liquid-vapor critical point which is difficult to probe, both experimentally and theoretically. Here, for the first time, we present the results of path-integral computations of the characteristics of a self-trapped particle at the critical point of a Lennard-Jones fluid for a positive particle-atom scattering length. We investigate the influence of the range of the particle-atom interaction on trapping properties, and the pick-off decay rate for the case where the particle is ortho-positronium.Comment: 12 pages, 3 figures, revtex4 preprin

    The stellar-subhalo mass relation of satellite galaxies

    Full text link
    We extend the abundance matching technique (AMT) to infer the satellite-subhalo and central-halo mass relations (MRs) of galaxies, as well as the corresponding satellite conditional mass functions (CMFs). We use the observed galaxy stellar mass function (GSMF) decomposed into centrals and satellites and the LCDM halo/subhalo mass functions as inputs. We explore the effects of defining the subhalo mass at the time of accretion (m_acc) vs. at the time of observation (m_obs). We test the standard assumption that centrals and satellites follow the same MRs, showing that this assumption leads to predictions in disagreement with observations, specially for m_obs. Instead, when the satellite-subhalo MRs are constrained following our AMT, they are always different from the central-halo MR: the smaller the stellar mass (Ms), the less massive is the subhalo of satellites as compared to the halo of centrals of the same Ms. On average, for Ms<2x10^11Msol, the dark mass of satellites decreased by 60-65% with respect to their masses at accretion time. The resulting MRs for both definitions of subhalo mass yield satellite CMFs in agreement with observations. Also, when these MRs are used in a HOD model, the predicted correlation functions agree with observations. We show that the use of m_obs leads to less uncertain MRs than m_acc, and discuss implications of the obtained satellite-subhalo MR. For example, we show that the tension between abundance and dynamics of MW satellites in LCDM gives if the slope of the GSMF faint-end slope upturns to -1.6.Comment: 13, pages, 4 figures. Accepted for publication in ApJ. Minor changes to previous versio

    A Framework for PreSPEC-AGATA Data Analysis

    Get PDF

    Evolution of basin and range structure in the Ruby Mountains and vicinity, Nevada

    Get PDF
    Results from various age dating techniques, seismic reflection profiling hydrocarbon maturation studies, and structural analysis were used to evaluate the Cenozoic deformation in the Ruby Mountains and adjoining ranges (pinyon Range and Cortez Range) in Elko and Eureka Counties, Nevada. Age dating techniques used include potassium-argon ages of biotites from granites published by Kistler et al. (1981) and fission track ages from apatite and zircon. Fission track ages from apatite reflect a closing temperature of 100 plus or minus 20 deg C. Zircon fission track ages reflect a closing temperature of 175 plus or minus 25 deg C and potassium-argon ages from brotite reflect a closing temperature of 250 plus or minus 30 deg C. Thus these results allow a reasonably precise tracking of the evolution of the ranges during the Cenozoic. Seismic reflection data are available from Huntington Valley. Access to seismic reflection data directly to the west of the Harrison Pass Pluton in the central Ruby Mountains was obtained. In addition results are available from several deep exploration holes in Huntington Valley

    Position Sensitivity of LYCCA Time-of-Flight Detectors

    Get PDF

    Two Examples of Circular Motion for Introductory Courses in Relativity

    Get PDF
    The circular twin paradox and Thomas Precession are presented in a way that makes both accessible to students in introductory relativity courses. Both are discussed by examining what happens during travel around a polygon and then in the limit as the polygon tends to a circle. Since relativistic predictions based on these examples can be verified in experiments with macroscopic objects such as atomic clocks and the gyroscopes on Gravity Probe B, they are particularly convincing to introductory students.Comment: Accepted by the American Journal of Physics This version includes revision
    corecore