1,994 research outputs found
Finding the First Stars: The Hamburg/ESO Objective Prism Survey
We report on a search for extremely metal-poor ([Fe/H]<-3.0) turnoff stars in
the Hamburg/ESO objective prism survey (HES). Metal-poor stars are selected by
automatic spectral classification. Extensive simulations show that the
selection efficiency for turnoff stars of [Fe/H]25% at B<16.5. Since
the HES is more than 1 mag deeper than the HK survey of Beers et al. (1992),
the HES offers the possibility to efficiently increase the total number of
metal-poor stars by at least a factor of 4.Comment: To appear in: Proceedings of ESO/MPA conference "The First Stars". 2
pages, 1 figur
Use of soil moisture information in yield models
There are no author-identified significant results in this report
Observation of coherent many-body Rabi oscillations
A two-level quantum system coherently driven by a resonant electromagnetic
field oscillates sinusoidally between the two levels at frequency
which is proportional to the field amplitude [1]. This phenomenon, known as the
Rabi oscillation, has been at the heart of atomic, molecular and optical
physics since the seminal work of its namesake and coauthors [2]. Notably, Rabi
oscillations in isolated single atoms or dilute gases form the basis for
metrological applications such as atomic clocks and precision measurements of
physical constants [3]. Both inhomogeneous distribution of coupling strength to
the field and interactions between individual atoms reduce the visibility of
the oscillation and may even suppress it completely. A remarkable
transformation takes place in the limit where only a single excitation can be
present in the sample due to either initial conditions or atomic interactions:
there arises a collective, many-body Rabi oscillation at a frequency
involving all N >> 1 atoms in the sample [4]. This is true even
for inhomogeneous atom-field coupling distributions, where single-atom Rabi
oscillations may be invisible. When one of the two levels is a strongly
interacting Rydberg level, many-body Rabi oscillations emerge as a consequence
of the Rydberg excitation blockade. Lukin and coauthors outlined an approach to
quantum information processing based on this effect [5]. Here we report initial
observations of coherent many-body Rabi oscillations between the ground level
and a Rydberg level using several hundred cold rubidium atoms. The strongly
pronounced oscillations indicate a nearly complete excitation blockade of the
entire mesoscopic ensemble by a single excited atom. The results pave the way
towards quantum computation and simulation using ensembles of atoms
Measurement of the electric dipole moments for transitions to rubidium Rydberg states via Autler-Townes splitting
We present the direct measurements of electric-dipole moments for
transitions with for Rubidium atoms. The
measurements were performed in an ultracold sample via observation of the
Autler-Townes splitting in a three-level ladder scheme, commonly used for
2-photon excitation of Rydberg states. To the best of our knowledge, this is
the first systematic measurement of the electric dipole moments for transitions
from low excited states of rubidium to Rydberg states. Due to its simplicity
and versatility, this method can be easily extended to other transitions and
other atomic species with little constraints. Good agreement of the
experimental results with theory proves the reliability of the measurement
method.Comment: 12 pages, 6 figures; figure 6 replaced with correct versio
Analysis of stellar spectra with 3D and NLTE models
Models of radiation transport in stellar atmospheres are the hinge of modern
astrophysics. Our knowledge of stars, stellar populations, and galaxies is only
as good as the theoretical models, which are used for the interpretation of
their observed spectra, photometric magnitudes, and spectral energy
distributions. I describe recent advances in the field of stellar atmosphere
modelling for late-type stars. Various aspects of radiation transport with 1D
hydrostatic, LTE, NLTE, and 3D radiative-hydrodynamical models are briefly
reviewed.Comment: 21 pages, accepted for publication as a chapter in "Determination of
Atmospheric Parameters of B, A, F and G Type Stars", Springer (2014), eds. E.
Niemczura, B. Smalley, W. Pyc
Observation of mesoscopic crystalline structures in a two-dimensional Rydberg gas
The ability to control and tune interactions in ultracold atomic gases has
paved the way towards the realization of new phases of matter. Whereas
experiments have so far achieved a high degree of control over short-ranged
interactions, the realization of long-range interactions would open up a whole
new realm of many-body physics and has become a central focus of research.
Rydberg atoms are very well-suited to achieve this goal, as the van der Waals
forces between them are many orders of magnitude larger than for ground state
atoms. Consequently, the mere laser excitation of ultracold gases can cause
strongly correlated many-body states to emerge directly when atoms are
transferred to Rydberg states. A key example are quantum crystals, composed of
coherent superpositions of different spatially ordered configurations of
collective excitations. Here we report on the direct measurement of strong
correlations in a laser excited two-dimensional atomic Mott insulator using
high-resolution, in-situ Rydberg atom imaging. The observations reveal the
emergence of spatially ordered excitation patterns in the high-density
components of the prepared many-body state. They have random orientation, but
well defined geometry, forming mesoscopic crystals of collective excitations
delocalised throughout the gas. Our experiment demonstrates the potential of
Rydberg gases to realise exotic phases of matter, thereby laying the basis for
quantum simulations of long-range interacting quantum magnets.Comment: 10 pages, 7 figure
A suboptimality test for two person zero sum Markov games
This paper presents a games version of the nonoptimality test given by Hastings for Markov decision processes. A pure action will be eliminated if compared to some randomized action it performs worse against any of the opponents possible actions
- …
