705 research outputs found
Folate catabolites in spot urine as non-invasive biomarkers of folate status during habitual intake and folic acid supplementation.
Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate.
Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation.
Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined.
Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks.
Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics
Emerging Infectious Disease leads to Rapid Population Decline of Common British Birds
Emerging infectious diseases are increasingly cited as threats to wildlife, livestock and humans alike. They can threaten geographically isolated or critically endangered wildlife populations; however, relatively few studies have clearly demonstrated the extent to which emerging diseases can impact populations of common wildlife species. Here, we report the impact of an emerging protozoal disease on British populations of greenfinch Carduelis chloris and chaffinch Fringilla coelebs, two of the most common birds in Britain. Morphological and molecular analyses showed this to be due to Trichomonas gallinae. Trichomonosis emerged as a novel fatal disease of finches in Britain in 2005 and rapidly became epidemic within greenfinch, and to a lesser extent chaffinch, populations in 2006. By 2007, breeding populations of greenfinches and chaffinches in the geographic region of highest disease incidence had decreased by 35% and 21% respectively, representing mortality in excess of half a million birds. In contrast, declines were less pronounced or absent in these species in regions where the disease was found in intermediate or low incidence. Also, populations of dunnock Prunella modularis, which similarly feeds in gardens, but in which T. gallinae was rarely recorded, did not decline. This is the first trichomonosis epidemic reported in the scientific literature to negatively impact populations of free-ranging non-columbiform species, and such levels of mortality and decline due to an emerging infectious disease are unprecedented in British wild bird populations. This disease emergence event demonstrates the potential for a protozoan parasite to jump avian host taxonomic groups with dramatic effect over a short time period
The Effects of Cocaine on Different Redox Forms of Cysteine and Homocysteine, and on Labile, Reduced Sulfur in the Rat Plasma Following Active versus Passive Drug Injections
Received: 28 November 2012 / Revised: 19 April 2013 / Accepted: 6 May 2013 / Published online: 16 May 2013
The Author(s) 2013. This article is published with open access at Springerlink.comThe aim of the present studies was to evaluate
cocaine-induced changes in the concentrations of different
redox forms of cysteine (Cys) and homocysteine (Hcy),
and products of anaerobic Cys metabolism, i.e., labile,
reduced sulfur (LS) in the rat plasma. The above-mentioned
parameters were determined after i.p. acute and
subchronic cocaine treatment as well as following i.v.
cocaine self-administration using the yoked procedure.
Additionally, Cys, Hcy, and LS levels were measured
during the 10-day extinction training in rats that underwent
i.v. cocaine administration. Acute i.p. cocaine treatment
increased the total and protein-bound Hcy contents,
decreased LS, and did not change the concentrations of Cys
fractions in the rat plasma. In turn, subchronic i.p. cocaine administration significantly increased free Hcy and lowered
the total and protein-bound Cys concentrations while
LS level was unchanged. Cocaine self-administration
enhanced the total and protein-bound Hcy levels, decreased
LS content, and did not affect the Cys fractions. On the
other hand, yoked cocaine infusions did not alter the concentration
of Hcy fractions while decreased the total and
protein-bound Cys and LS content. This extinction training
resulted in the lack of changes in the examined parameters
in rats with a history of cocaine self-administration while in
the yoked cocaine group an increase in the plasma free Cys
fraction and LS was seen. Our results demonstrate for the
first time that cocaine does evoke significant changes in
homeostasis of thiol amino acids Cys and Hcy, and in some
products of anaerobic Cys metabolism, which are dependent
on the way of cocaine administration
Homocysteine levels in preterm infants: is there an association with intraventricular hemorrhage? A prospective cohort study.
BACKGROUND: The purpose of this study was to characterize total homocysteine (tHcy) levels at birth in preterm and term infants and identify associations with intraventricular hemorrhage (IVH) and other neonatal outcomes such as mortality, sepsis, necrotizing enterocolitis, bronchopulmonary dysplasia, and thrombocytopenia. METHODS: 123 infants \u3c 32 weeks gestation admitted to our Level III nursery were enrolled. A group of 25 term infants were enrolled for comparison. Two blood spots collected on filter paper with admission blood drawing were analyzed by a high performance liquid chromatography (HPLC) method. Statistical analysis included ANOVA, Spearman\u27s Rank Order Correlation and Mann-Whitney U test. RESULTS: The median tHcy was 2.75 micromol/L with an interquartile range of 1.34 - 4.96 micromol/L. There was no difference between preterm and term tHcy (median 2.76, IQR 1.25 - 4.8 micromol/L vs median 2.54, IQR 1.55 - 7.85 micromol/L, p = 0.07). There was no statistically significant difference in tHcy in 31 preterm infants with IVH compared to infants without IVH (median 1.96, IQR 1.09 - 4.35 micromol/L vs median 2.96, IQR 1.51 - 4.84 micromol/L, p = 0.43). There was also no statistically significant difference in tHcy in 7 infants with periventricular leukomalacia (PVL) compared to infants without PVL (median 1.55, IQR 0.25 - 3.45 micromol/L vs median 2.85, IQR 1.34 - 4.82 micromol/L, p = 0.07). Male infants had lower tHcy compared to female; prenatal steroids were associated with a higher tHcy. CONCLUSION: In our population of preterm infants, there is no association between IVH and tHcy. Male gender, prenatal steroids and preeclampsia were associated with differences in tHcy levels
Prevalences of hyperhomocysteinemia, unfavorable cholesterol profile and hypertension in European populations
Item does not contain fulltextBACKGROUND: Hyperhomocysteinemia (HHCY) is a risk factor for cardiovascular diseases (CVD). HHCY may interact with hypertension (HTEN) and an unfavorable cholesterol profile (UNFAVCHOL) to alter the risk of CVD. OBJECTIVES: To estimate the prevalences of HHCY (1) isolated and (2) in combination with UNFAVCHOL and/or HTEN in different age categories. To provide information that may improve the screening and treatment of subjects at risk of CVD. DESIGN: Cross-sectional data on 12,541 men and 12,948 women aged 20 + y were used from nine European studies. RESULTS: The prevalence of isolated HHCY was 8.5% in subjects aged 20-40 y, 4.7% in subjects aged 40-60 y and 5.9% in subjects aged over 60 y. When combining all age groups, 5.3% had isolated HHCY and an additional 5.6% had HHCY in combination with HTEN and/or UNFAVCHOL. The combinations of risk factors increased with age and, except for HHCY&UNFAVCHOL, were more prevalent than predicted by chance. Of the young subjects (20-40 y), 24% suffered from one or more of the investigated CVD risk factors. This figure was 75.1% in the old subjects (60+ years). CONCLUSIONS: A substantial number of subjects in selected European populations have HHCY (10.9%). In half of these cases, subjects suffer also from other CVD risk factors like UNFAVCHOL and HTEN. Older people in particular tend to have more than one risk factor. Healthcare professionals should be aware of this when screening and treating older people not only for the conventional CVD risk factors like UNFAVCHOL and HTEN but also HHCY, as this can easily be reduced through increased intake of folic acid via supplement or foods fortified with folic acid
Irish cardiac society - Proceedings of annual general meeting held 20th & 21st November 1992 in Dublin Castle
Kynurenine pathway metabolites in Alzheimer's disease.
Background Metabolites of tryptophan, produced via the kynurenine pathway (kynurenines) have been linked to Alzheimer’s disease (AD) in small cohorts with conflicting results. Objective To compare differences in plasma kynurenine levels between AD and controls and identify potential associations with cognition. Methods The study included 65 histopathologically-confirmed AD patients and 65 cognitively-screened controls from the Oxford Project to Investigate Memory and Ageing (OPTIMA) cohort. Cognition was assessed using the Cambridge Cognitive Examination (CamCog). Tryptophan, kynurenines, neopterin and vitamin B6 forms were measured in plasma by liquid chromatography-tandem mass spectrometry. Non-parametric statistics, logistic regression and standardized robust regressions were applied with a false discovery rate of 0.05. Results Tryptophan, xanthurenic acid, 3-hydroxyanthranilic acid and quinolinic acid were lower in AD (Odds ratios (ORs) 0.24 – 0.47; p-values < 0.001 – 0.01). Pyridoxal 5’phosphate did not differ between AD and controls. Kynurenine, anthranilic acid, quinolinic acid and markers of immune activation (neopterin, kynurenine/tryptophan ratio and the PAr index (Pyridoxic acid/(Pyridoxal 5’phosphate + Pyridoxal)) increased with age (β 0.31 – 0.51; p-values < 0.001 – 0.006). Xanthurenic acid decreased with age (β: -0.42, p < 0.001). Elderly AD patients with high quinolinic acid performed worse on the CamCog test, indicated by a significant age*quinolinic acid interaction (β 0.21, p < 0.001). Conclusion Plasma concentrations of several kynurenines were lower in patients with AD compared to controls. Low xanthurenic acid occurred in both AD and with ageing. Inflammation-related markers were associated with age, but not AD. However, elevated QA was associated with poor cognition in older AD patients
Cobalamin and folate status in infants and young children in a low-to-middle income community in India
Background: Population-based data on the prevalence of cobalamin and folate deficiency in India are lacking. Objective: The objective was to measure the prevalence of cobalamin and folate deficiency among children aged 6-30 mo residing in a low-to-middle income community in North India. Design: Children aged 6-30 mo (n = 2482) were identified through a community survey in a low-to-middle socioeconomic area in New Delhi, India. Non-fasting venous blood samples were collected before enrollment in another trial. Results: The median (interquartile range; IQR) cobalamin concentration in 6-11-mo-old children was substantially lower in breastfed (183; 120-263 pmol/L) than in nonbreastfed (334; 235-463 pmol/L) children. Cobalamin concentrations decreased progressively with increasing age in the nonbreastfed children. Median (IQR) plasma folate concentrations in the 6-11-mo-old group were higher in breastfed (20.3; 11.7-34.4 nmol/L) than in nonbreastfed (5.3; 3.4-7.7 nmol/L) children (P < 0.001). Folate concentrations decreased with increasing age in the breastfed children. In the nonbreastfed children, folate concentrations increased with increasing age. Low concentrations of plasma cobalamin (<150 pmol/L) were were detected in 36% of breastfed and 9% of nonbreastfed children (P < 0.001). The proportions of children with plasma folate concentrations <5 nmol/L in these 2 subgroups were 6% and 33%, respectively (P < 0.001). Conclusions: In north Indian preschool children, cobalamin and folate concentrations were commonly low and were associated with elevated total homocysteine and methylmalonic acid concentrations. Because low cobalamin and folate concentrations have functional consequences, population-based measures for improving cobalamin and folate concentrations need to be seriously considered
Mortality in Norway and Sweden during the COVID-19 pandemic
Background: Norway and Sweden are similar countries in terms of socioeconomics and health care. Norway implemented extensive COVID-19 measures, such as school closures and lockdowns, whereas Sweden did not. Aims: To compare mortality in Norway and Sweden, two similar countries with very different mitigation measures against COVID-19.
Methods: Using real-world data from national registries, we compared all-cause and COVID-19-related mortality rates with 95% confidence intervals (CI) per 100,000 person-weeks and mortality rate ratios (MRR) comparing the five preceding years (2015–2019) with the pandemic year (2020) in Norway and Sweden.
Results: In Norway, all-cause mortality was stable from 2015 to 2019 (mortality rate 14.6–15.1 per 100,000 person-weeks; mean mortality rate 14.9) and was lower in 2020 than from 2015 to 2019 (mortality rate 14.4; MRR 0.97; 95% CI 0.96–0.98). In Sweden, all-cause mortality was stable from 2015 to 2018 (mortality rate 17.0–17.8; mean mortality rate 17.1) and similar to that in 2020 (mortality rate 17.6), but lower in 2019 (mortality rate 16.2). Compared with the years 2015–2019, all-cause mortality in the pandemic year was 3% higher due to the lower rate in 2019 (MRR 1.03; 95% CI 1.02–1.04). Excess mortality was confined to people aged ⩾70 years in Sweden compared with previous years. The COVID-19-associated mortality rates per 100,000 person-weeks during the first wave of the pandemic were 0.3 in Norway and 2.9 in Sweden.
Conclusions: All-cause mortality in 2020 decreased in Norway and increased in Sweden compared with previous years. The observed excess deaths in Sweden during the pandemic may, in part, be explained by mortality displacement due to the low all-cause mortality in the previous year
- …
