413 research outputs found
Evidence for late Quaternary surface rupture along the Leech River fault near Victoria, British Columbia
New surficial and bedrock mapping and paleoseismic trenching of the Leech River fault provide the first evidence for Quaternary surface-rupturing earthquakes in southwestern British Columbia, Canada. The Leech River fault extends ~60 km across southern Vancouver Island, from Victoria, British Columbia to the Pacific shoreline and is a terrane-bounding structure separating the Pacific Rim Terrane from basalts of the Eocene Crescent Terrane. The fault is not currently listed in the active fault catalogue for Canada, and post-Eocene-Oligocene slip had not been documented prior to this study. However, based on new field mapping aided by lidar topography, we identify >60 individual, sub-parallel, linear scarps, sags and swales occurring in semi-continuous, en echelon arrays that offset bedrock and late Pleistocene-Holocene deposits. Field observations of these scarps confirm that they are not the result of anthropogenic, glacial or landslide processes, and in several places the scarps are located above exposures of faulted bedrock with brittle fracture networks and gouge. At a site ~5 km west of Leechtown, British Columbia, we estimate ~6 m of dip-slip reverse displacement of a post-Last Glacial Maximum (<~15 ka) colluvial surface and ~4 m of displacement of intervening channels. Two paleoseismic trenches at this site reveal (1) Jurassic Leech River Schist in fault contact with latest Pleistocene loess and colluvium, and (2) latest Pleistocene till thrust over post-glacial colluvium. These trenches preserve a record of at least three, and possibly four, earthquakes since the Last Glacial Maximum, each with ~1 m vertical displacement. We interpret the active Leech River fault as a 500–1000 m-wide, steeply dipping fault zone that accommodates transpression across the northern Cascadia forearc. The onshore trace of the Leech River fault may continue offshore to the east, south of Victoria, and may be kinematically linked to active faults in western Washington (e.g., Devils Mountain and Southern Whidbey Island faults). The Leech River fault is likely one of several active crustal faults that should be considered in seismic hazard assessments for southern British Columbia and northwestern Washington
Seismicity relocation and fault structure near the Leech River Fault Zone, southern Vancouver Island
Relatively low rates of seismicity and fault loading have made it challenging to correlate microseismicity to mapped surface faults on the forearc of southern Vancouver Island. Here we use precise relocations of microsciesmicity integrated with existing geologic data, to present the first identification of subsurface seismogenic structures associated with the Leech River fault zone (LRFZ) on southern Vancouver Island. We used HypoDD double difference relocation method to relocate 1253 earthquakes reported by the Canadian National Seismograph Network (CNSN) catalog from 1985 to 2015. Our results reveal an ~8-10 km wide, NNE-dipping zone of seismicity representing a subsurface structure along the eastern 30 km of the terrestrial LRFZ and extending 20 km farther eastward offshore, where the fault bifurcates beneath the Juan de Fuca Strait. Using a clustering analysis we identify secondary structures within the NNE-dipping fault zone, many of which are sub-vertical and exhibit right-lateral strike-slip focal mechanisms. We suggest that the arrangement of these near-vertical dextral secondary structures within a more general NE-dipping fault zone, located well beneath (10-15 km) the Leech River fault (LRF) as imaged by LITHOPROBE, may be a consequence of the reactivation of this fault system as a right-lateral structure in the crust with pre-existing NNE-dipping foliations. Our results provide the first confirmation of active terrestrial crustal faults on Vancouver Island using a relocation method. We suggest that slowly slipping active crustal faults, especially in regions with pre-existing foliations, may result in microseismicity along fracture arrays rather than along single planar structures
Slip inversion along inner fore-arc faults, eastern Tohoku, Japan
The kinematics of deformation in the overriding plate of convergent margins may vary across timescales ranging from a single seismic cycle to many millions of years. In Northeast Japan, a network of active faults has accommodated contraction across the arc since the Pliocene, but several faults located along the inner fore arc experienced extensional aftershocks following the 2011 Tohoku-oki earthquake, opposite that predicted from the geologic record. This observation suggests that fore-arc faults may be favorable for stress triggering and slip inversion, but the geometry and deformation history of these fault systems are poorly constrained. Here we document the Neogene kinematics and subsurface geometry of three prominent fore-arc faults in Tohoku, Japan. Geologic mapping and dating of growth strata provide evidence for a 5.6–2.2 Ma initiation of Plio-Quaternary contraction along the Oritsume, Noheji, and Futaba Faults and an earlier phase of Miocene extension from 25 to 15 Ma along the Oritsume and Futaba Faults associated with the opening of the Sea of Japan. Kinematic modeling indicates that these faults have listric geometries, with ramps that dip ~40–65°W and sole into subhorizontal detachments at 6–10 km depth. These fault systems can experience both normal and thrust sense slip if they are mechanically weak relative to the surrounding crust. We suggest that the inversion history of Northeast Japan primed the fore arc with a network of weak faults mechanically and geometrically favorable for slip inversion over geologic timescales and in response to secular variations in stress state associated with the megathrust seismic cycle.Funding was provided by a grant from the National Science Foundation Tectonics Program grant EAR-0809939 to D.M.F. and E.K., Geologic Society of America Graduate Research Grants, and the P.D. Krynine Memorial Fund. The authors thank Gaku Kimura, Kyoko Tonegawa, Hiroko Watanabe, Jun Kameda, and Asuka Yamaguchi for scientific and logistical support, and Kristin Morell for comments on early versions of the manuscript. We also thank Yuzuru Yamamoto and Kohtaro Ujiie for their detailed reviews and suggestions for improvement to the manuscript. The authors acknowledge the use of the Move Software Suite granted by Midland Valley's Academic Software Initiative. Geologic, structural, stratigraphic, and chronologic data used herein are accessible in manuscript figures, and in the citations therein. Input geologic data for trishear kinematic modeling can be accessed in Table 1 and in the supporting information. (EAR-0809939 - National Science Foundation Tectonics Program grant; Geologic Society of America Graduate Research Grants; P.D. Krynine Memorial Fund
Quaternary rupture of a crustal fault beneath Victoria, British Columbia, Canada
The seismic potential of crustal faults within the forearc of the northern Cascadia subduction zone in British Columbia has remained elusive, despite the recognition of recent seismic activity on nearby fault systems within the Juan de Fuca Strait. In this paper, we present the first evidence for earthquake surface ruptures along the Leech River fault, a prominent crustal fault near Victoria, British Columbia. We use LiDAR and field data to identify >60 steeply dipping, semi-continuous linear scarps, sags, and swales that cut across both bedrock and Quaternary deposits along the Leech River fault. These features are part of an ~1-km-wide and up to >60-km-long steeply dipping fault zone that accommodates active forearc transpression together with structures in the Juan de Fuca Strait and the U.S. mainland. Reconstruction of fault slip across a deformed <15 ka colluvial surface near the center of the fault zone indicates ~6 m of vertical separation across the surface and ~4 m of vertical separation of channels incising the surface. These displacement data indicate that the Leech River fault has experienced at least two surface-rupturing earthquakes since the deglaciation following the last glacial maximum ca. 15 ka, and should therefore be incorporated as a distinct shallow seismic source in seismic hazard assessments for the region.This research was supported by an NSERC Discovery grant to KM and NSF EAR IRFP Grant #1349586 to CR
Styles of underplating in the Marin Headlands Terrane, Franciscan Complex, California
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in The Geological Society of America Special Papers following peer review. The definitive publisher-authenticated version:
"Regalla, C., Rowe, C., Harrichhausen, N., Tarling, M. and Singh, J., 2018. Styles of underplating in the Marin Headlands Terrane, Franciscan Complex, California. GSA Special Publications no. 534" is available online at: http://rock.geosociety.org/Store/detail.aspx?id=spe534.Geophysical images and structural cross-sections of accretionary wedges are usually aligned orthogonal to the subduction trench axis. These sections often reveal underplated duplexes of subducted oceanic sediment and igneous crust that record trench-normal shortening and wedge thickening facilitated by down-stepping of the décollement. However, this approach may under-recognize trench-parallel strain and the effects of faulting associated with flexure of the downgoing plate. New mapping of a recently exposed transect across a portion of the Marin Headlands terrane, California, USA documents evidence for structural complexity over short spatio-temporal scales within an underplated system. We document the geometry, kinematics, vergence and internal architecture of faults and folds along ~2.5 km of section, and identify six previously unmapped intra-formational imbricate thrusts and thirteen high-angle faults that accommodate shortening and flattening of the underthrust section. Thrust faults occur within nearly every lithology without clear preference for any stratigraphic horizon, and fold vergence varies between imbricate sheets by ~10-40°. In our map area, imbricate bounding thrusts have relatively narrow damage zones (≤5-10 m), sharp, discrete fault cores, and lack veining, in contrast to the wide, highly-veined fault zones previously documented in the Marin Headlands terrane. The spacing of imbricate thrusts combined with paleo-convergence rates indicates relatively rapid generation of new fault surfaces on ~10-100 ka timescales, a process which may contribute to strain hardening and locking within the seismogenic zone. The structural and kinematic complexity documented in the Marin Headlands are an example of the short spatial and temporal scales of heterogeneity that may characterize regions of active underplating. Such features are smaller than the typical spatial resolution of geophysical data from active subduction thrusts, and may not be readily resolved, thus highlighting the need for cross-comparison of geophysical data with field analogues when evaluating the kinematic and mechanical processes of underplating
Recommended from our members
Ongoing oroclinal bending in the Cascadia forearc and its relation to concave-outboard plate margin geometry
The concave-inboard (concave toward the overriding plate) geometry of most convergent margins is considered a natural consequence of the depression of the edge of a thin spherical cap, whereas concave-outboard margin segments commonly form around indenters on the subducting plate. At the Cascadia subduction zone, the apex of a > 500-km-long concave-outboard bend in the trench presently shows no obvious subduction of an indenter, but does coincide with the axis of an outboard-facing concavity in upper-plate rocks arched around the Olympic Peninsula in northwestern Washington State, USA. Here we synthesize paleomagnetic and structural data together with new analyses of Global Navigation Satellite System data to show that the upper plate at Cascadia has been folded from the Miocene to the present into an orocline with an axial trace that bisects the Olympic Peninsula. The processes that accommodate bending, which we suggest include (1) folding by flexural slip on the orocline limbs and (2) shortening, uplift, and escape within the core of the fold at the Olympic Mountains, have the combined result of relative motion of the forearc towards the arc at the core of the orocline, and sustained opposing rotations of the upper plate on the orocline limbs. We propose that oroclinal bending is promoted and maintained by along-strike variations in plate-boundary tractions resulting from the geometry of the plate interface at depth and suggest that these processes can contribute to the development of concave-outboard margins without the need for a subducting indenter
Holocene Surface Rupture History of an Active Forearc Fault Redefines Seismic Hazard in Southwestern British Columbia, Canada
Bridging the Gap: Preparing Teachers to Meet the Needs of ELLs through Service-Learning
Although the U.S. student population has become increasingly diverse, our teaching force does not reflect equal levels of diversity. Teacher education programs are charged with the task of preparing pre-service teachers to meet the needs of culturally and linguistically diverse students. This paper addresses one option for providing pre-service teachers with diversity experiences by offering a short term service-learning program abroad. Research has shown that pre-service teachers feel more prepared to meet the needs of English learners after their participation in international experiences with service-learning or study abroad. This paper presents practical guidance for teacher educators who wish to start a service-learning program for pre-service teachers
A Study on Teacher Candidates’ Questioning Strategies for English Learners through an Interactive Classroom Simulation
This study examines a classroom simulation workshop designed for teacher candidates (TCs) to practice questioning strategies with English learners (ELs) at various English proficiency levels, through the lens of sociocultural theory. Data was collected from an assignment in an ESOL methods course consisting of questions that TCs prepared before the simulation, revised after the simulation, and responses to an open-ended questionnaire. Findings show that TCs made their questions comprehensible for beginner level ELs, however, overextended their question modification to both the intermediate and advanced levels. Implications highlight the importance of practicing questioning strategies that are appropriate for all proficiency levels
Coastal waters of a marine protected area of the Bijagós Archipelago, West Africa, shelter juvenile fishes of economic and ecological importance
In many marine ecosystems small pelagic fish exert a crucial role in controlling the dynamics of the
community, mainly due to their high biomass at intermediate levels of the food web. These fish use
coastal marine ecosystems as nursery areas, but also to forage and to avoid predation or competition.
We studied spatial, seasonal, lunar and diel variations in a coastal fish community from a marine
protected area of the Bijagós Archipelago, Guinea-Bissau. Fish were sampled with 46 beach seine net
sessions in 2015 and 2016. A total of 35 fish species of 25 families were captured. Fish abundance
varied between years and seasons, with a higher abundance in the dry season, but not by lunar tide.
Nonetheless, the community composition was broadly similar over the seasons, among islands and
between lunar tides. Clupeidae, Haemulidae and Gerreidae were the most abundant fish families.
Sardinella maderensis highly dominated the captures throughout the year, with catches much higher
than any other species. The differences in abundance between seasons and years may be related with
movements to or from the shore due to feeding activity or to avoid predation, or else to differences in
recruitment between years. There were no significant diel differences in species richness and diversity,
although higher numbers of fish were captured during daytime. For most species the majority of
individuals captured were immature, highlighting the importance of the archipelago as nursery area
for several species. These small pelagics, and particularly Sardinella maderensis, represent the main
prey for several marine predators. Thus, the conservation of such fish species may be key for the
management of the Bijagós Archipelago.Fundação para a Ciência e Tecnologia - FCTinfo:eu-repo/semantics/publishedVersio
- …
