15 research outputs found
Is a Genome a Codeword of an Error-Correcting Code?
Since a genome is a discrete sequence, the elements of which belong to a set of four letters, the question as to whether or not there is an error-correcting code underlying DNA sequences is unavoidable. The most common approach to answering this question is to propose a methodology to verify the existence of such a code. However, none of the methodologies proposed so far, although quite clever, has achieved that goal. In a recent work, we showed that DNA sequences can be identified as codewords in a class of cyclic error-correcting codes known as Hamming codes. In this paper, we show that a complete intron-exon gene, and even a plasmid genome, can be identified as a Hamming code codeword as well. Although this does not constitute a definitive proof that there is an error-correcting code underlying DNA sequences, it is the first evidence in this direction
Presence of Lutzomyia longipalpis (Diptera: Psychodidae) in the Parque Estadual da Serra da Tiririca, State of Rio de Janeiro, Southeastern Brazil
Abstract INTRODUCTION: The sand fly, Lutzomyia longipalpis, is the main vector of Leishmania infantum in the Americas, primarily occurring in areas of apparent anthropomorphic modifications in several regions of Brazil. METHODS Sand flies were captured using light traps. RESULTS Out of all captured species, Lu. longipalpis numbers had increased within the park. CONCLUSIONS We report the occurrence of Lu. longipalpis in an area of Atlantic Forest, possibly representing the first sylvatic population of Lu. longipalpis in an area absent of peridomestic captures, but with the risk of L. infantum transmission in the areas of Niterói and Maricá
Novel deletion alleles carrying CYP21A1P/A2 chimeric genes in Brazilian patients with 21-hydroxylase deficiency
<p>Abstract</p> <p>Background</p> <p>Congenital adrenal hyperplasia due to 21-hydroxylase deficiency is caused by deletions, large gene conversions or mutations in <it>CYP21A2 </it>gene. The human gene is located at 6p21.3 within a <it>locus </it>containing the genes for putative serine/threonine Kinase <it>RP</it>, complement <it>C4</it>, steroid 21-hydroxylase <it>CYP21 </it>tenascin <it>TNX</it>, normally, in a duplicated cluster known as RCCX module. The <it>CYP21 </it>extra copy is a pseudogene (<it>CYP21A1P</it>). In Brazil, 30-kb deletion forming monomodular alleles that carry chimeric <it>CYP21A1P/A2 </it>genes corresponds to ~9% of disease-causing alleles. Such alleles are considered to result from unequal crossovers within the bimodular <it>C4/CYP21 locus</it>. Depending on the localization of recombination breakpoint, different alleles can be generated conferring the locus high degree of allelic variability. The purpose of the study was to investigate the variability of deleted alleles in patients with 21-hydroxylase deficiency.</p> <p>Methods</p> <p>We used different techniques to investigate the variability of 30-kb deletion alleles in patients with 21-hydroxylase deficiency. Alleles were first selected after Southern blotting. The composition of <it>CYP21A1P/A2 </it>chimeric genes was investigated by ASO-PCR and MLPA analyses followed by sequencing to refine the location of recombination breakpoints. Twenty patients carrying at least one allele with <it>C4/CYP21 </it>30-kb deletion were included in the study.</p> <p>Results</p> <p>An allele carrying a <it>CYP21A1P/A2 </it>chimeric gene was found unusually associated to a <it>C4B/C4A </it><it>Taq </it>I 6.4-kb fragment, generally associated to <it>C4B </it>and <it>CYP21A1P </it>deletions. A novel haplotype bearing both p.P34L and p.H62L, novel and rare mutations, respectively, was identified in exon 1, however p.P30L, the most frequent pseudogene-derived mutation in this exon, was absent. Four unrelated patients showed this haplotype. Absence of p.P34L in <it>CYP21A1P </it>of normal controls indicated that it is not derived from pseudogene. In addition, the combination of different approaches revealed nine haplotypes for deleted 21-hydroxylase deficiency alleles.</p> <p>Conclusions</p> <p>This study demonstrated high allelic variability for 30-kb deletion in patients with 21-hydroxylase deficiency indicating that a founder effect might be improbable for most monomodular alleles carrying <it>CYP21A1P/A2 </it>chimeric genes in Brazil.</p
Molecular and Behavioral Differentiation among Brazilian Populations of Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae)
Lutzomyia longipalpis is the main vector of visceral leishmaniasis in the Americas. There is strong evidence that L. longipalpis is a species complex, but there is still no consensus regarding the number of species occurring in Brazil. We combined molecular and behavioral analyses of a number of L. longipalpis populations in order to help clarify this question. This approach has allowed us to identify two main groups of populations in Brazil. One group probably represents a single species distributed mainly throughout the coastal regions of North and Northeast Brazil and whose males produce the same type of copulation song and pheromone. The second group is more heterogeneous, probably represented by a number of incipient species with different levels of genetic divergence among the siblings that produce different combinations of copulation songs and pheromones. The high level of complexity observed raises important questions concerning the epidemiological consequences of this incipient speciation process
Age-age correlation for early selection of rubber tree genotypes in São Paulo State, Brazil
Catálogo Taxonômico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil
The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the Catálogo Taxonômico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others
Should reproductively isolated populations of Lutzomyia longipalpis sensu lato receive taxonomically valid names?
A group of 18 research workers involved in different aspects of the biology of Lutzomyia longipalpis discussed whether or not it is important to give taxonomically valid names to populations that have been defined by biological, biochemical and molecular methods to be reproductively isolated. The type material of this medically important species has been lost and because of this it was recommended that a colony should be established from insects captured in the region of the type area and that their description should serve as the basis for future descriptions. It was pointed out that there is a lack of uniformity in the naming of closely related American sand flies and that some of the differences between populations of Lu. longipalpis are greater than those between accepted species. The majority of the participants agreed that the populations that have been defined in the literature as sibling species should be named
Rodent management and cereal production in Asia: Balancing food security and conservation
Rodents present a major problem for food security in Asia where smallholder farming families are particularly vulnerable. We review here recent developments in the biology and management of rodent pests in cereal cropping systems in Asia. The past decade has seen a strong focus on ecologically-based rodent management (EBRM), its adoption in field studies significantly increased rice yields (6–15%) and income (\u3e15%) in seven Asian countries. EBRM principles have also been successfully applied to maize in China. We provide case studies on EBRM in Cambodia, on interactions between rodent pests and weeds, and on the importance of modified wetlands for biodiversity and rodent pest management. Knowledge on post-harvest impacts of rodents is increasing. One research gap is the assessment of human health impacts from a reduction of rodent densities in and around houses. We identify 10 challenges for the next decade. For example, the need for population modelling, a valuable tool missing from our toolbox to manage rodent pests in cereal systems. We also need to understand better the interactive effects of cropping intensification, conservation agriculture and climate change. Finally, new management approaches such as fertility control are on the horizon and need to be considered in the context of smallholder cereal farming systems and mitigating health risks from zoonotic diseases associated with rodents. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry
