1,193 research outputs found

    Gas Purity effect on GEM Performance in He and Ne at Low Temperatures

    Full text link
    The performance of Gas Electron Multipliers (GEMs) in gaseous He, Ne, He+H2 and Ne+H2 was studied at temperatures in the range of 3-293 K. This paper reports on previously published measurements and additional studies on the effects of the purity of the gases in which the GEM performance is evaluated. In He, at temperatures between 77 and 293 K, triple-GEM structures operate at rather high gains, exceeding 1000. There is an indication that this high gain is achieved through the Penning effect as a result of impurities in the gas. At lower temperatures the gain-voltage characteristics are significantly modified probably due to the freeze-out of these impurities. Double-GEM and single-GEM structures can operate down to 3 K at gains reaching only several tens at a gas density of about 0.5 g/l; at higher densities the maximum gain drops further. In Ne, the maximum gain also drops at cryogenic temperatures. The gain drop in Ne at low temperatures can be re-established in Penning mixtures of Ne+H2: very high gains, exceeding 104, have been obtained in these mixtures at 30-77 K, at a density of 9.2 g/l which corresponds to saturated Ne vapor density at 27 K. The addition of small amounts of H2 in He also re-establishes large GEM gains above 30 K but no gain was observed in He+H2 at 4 K and a density of 1.7 g/l (corresponding to roughly one-tenth of the saturated vapor density). These studies are, in part, being pursued in the development of two-phase He and Ne detectors for solar neutrino detection.Comment: 4 pages, 7 figure

    GEM operation in helium and neon at low temperatures

    Full text link
    We study the performance of Gas Electron Multipliers (GEMs) in gaseous He, Ne and Ne+H2 at temperatures in the range of 2.6-293 K. In He, at temperatures between 62 and 293 K, the triple-GEM structures often operate at rather high gains, exceeding 1000. There is an indication that this high gain is achieved by Penning effect in the gas impurities released by outgassing. At lower temperatures the gain-voltage characteristics are significantly modified probably due to the freeze-out of impurities. In particular, the double-GEM and single-GEM structures can operate down to 2.6 K at gains reaching only several tens at a gas density of about 0.5 g/l; at higher densities the maximum gain drops further. In Ne, the maximum gain also drops at cryogenic temperatures. The gain drop in Ne at low temperatures can be reestablished in Penning mixtures of Ne+H2: very high gains, exceeding 10000, have been obtained in these mixtures at 50-60 K, at a density of 9.2 g/l corresponding to that of saturated Ne vapor near 27 K. The results obtained are relevant in the fields of two-phase He and Ne detectors for solar neutrino detection and electron avalanching at low temperatures.Comment: 13 pages, 14 figures. Accepted for publishing in Nucl. Instr. and Meth.

    Congregational bonding social capital and psychological type : an empirical enquiry among Australian churchgoers

    Get PDF
    This study explores the variation in levels of bonding social capital experienced by individual churchgoers, drawing on data generated by the Australian National Church Life Survey, and employing a five-item measure of church-related bonding social capital. Data provided by 2065 Australian churchgoers are used to test the thesis that individual differences in bonding social capital are related to a psychological model of psychological types (employing the Jungian distinctions). The data demonstrated that higher levels of bonding social capital were found among extraverts (compared with introverts), among intuitive types (compared with sensing types) and among feeling types (compared with thinking types), but no significant differences were found between judging types and perceiving types

    Oxygen Buffering in High Pressure Solid Media Assemblies: New Approach Enabling Study of fO2 from IW-4 to IW+4.5

    Get PDF
    Oxygen fugacity is an intensive parameter that controls some fundamental chemical and physical properties in planetary materials. In terrestrial magmas high fO2 promotes magnetite stability and low fO2 causes Fe-enrichment due to magnetite suppression. In lunar and asteroidal basalts, low fO2 can allow metal to be stable. Experimental studies will therefore be most useful if they are done at a specific and relevant fO2 for the samples under consideration. Control of fO2 in the solid media apparatus (piston cylinder multi-anvil) has relied on either sliding sensors or graphite capsule buffering, which are of limited application to the wide range of fO2 recorded in planetary or astromaterials. Here we describe a new approach that allows fO2 to be specified across a wide range of values relevant to natural samples

    New, high statistics measurement of the K+ -> pi0 e+ nu (Ke3) branching ratio

    Full text link
    E865 at the Brookhaven National Laboratory AGS collected about 70,000 K+(e3) events with the purpose of measuring the relative K+(e3) branching ratio. The pi0 in all the decays was detected using the e+e- pair from pi0 -> e+e-gamma decay and no photons were required. Using the Particle Data Group branching ratios for the normalization decays we obtain BR(K+(e3(gamma))=(5.13+/-0.02(stat)+/-0.09(sys)+/-0.04(norm))%, where K+(e3(gamma))includestheeffectofvirtualandrealphotons.Thisresultis2.3sigmahigherthanthecurrentParticleDataGroupvalue.TheimplicationsofthisresultfortheK+(e3(gamma)) includes the effect of virtual and real photons. This result is 2.3 sigma higher than the current Particle Data Group value. The implications of this result for the V_{us}$ element of the CKM matrix, and the matrix's unitarity are discussed.Comment: 4 pages, 5 figures; final version accepted by PR

    Experimental Study of the Radiative Decays K+ -> mu+ nu e+e- and K+ -> e+ nu e+e-

    Full text link
    Experiment 865 at the Brookhaven AGS obtained 410 K+ -> e+ nu e+e- and 2679 K+ -> mu+ nu e+e- events including 10% and 19% background. The branching ratios were measured to be (2.48+-0.14(stat.)+-0.14(syst.))x10^-8 (m_ee>150 MeV) and (7.06+-0.16+-0.26)x10^-8 (m_ee>145 MeV), respectively. Results for the decay form factors are presented.Comment: 4 pages, 3 figures, RevTeX

    Low-mass e+e- pair production in 158 A GeV Pb-Au collisions at the CERN SPS, its dependence on multiplicity and transverse momentum

    Full text link
    We report a measurement of low-mass electron pairs observed in 158 GeV/nucleon Pb-Au collisions. The pair yield integrated over the range of invariant masses 0.2 < m < 2.0 GeV is enhanced by a factor of 3.5 +/- 0.4 (stat) +/- 0.9 (syst) over the expectation from neutral meson decays. As observed previously in S-Au collisions, the enhancement is most pronounced in the invariant-mass region 300-700 MeV. For Pb-Au we find evidence for a strong increase of the enhancement with centrality. In addition, we show that the enhancement covers a wide range in transverse momentum, but is largest at the lowest observed pt.Comment: 17 pages, 4 figures, submitted to Phys.Lett.

    Azimuthal dependence of pion source radii in Pb+Au collisions at 158 A GeV

    Get PDF
    We present results of a two-pion correlation analysis performed with the Au+Pb collision data collected by the upgraded CERES experiment in the fall of 2000. The analysis was done in bins of the reaction centrality and the pion azimuthal emission angle with respect to the reaction plane. The pion source, deduced from the data, is slightly elongated in the direction perpendicular to the reaction plane, similarly as was observed at the AGS and at RHIC.Comment: 5 pages, 2 figure
    corecore