332 research outputs found

    Introduction to the analysis of delamination related fracture processes in composites

    Get PDF
    This research concerns the analysis and prediction of delamination damage that occurs in composite structures on the sublaminate scale - that is, the scale of individual plies or groups of plies. The objective was to develop analytical models for fixed-mode delamination in composites. These include: (1) the influence of residual thermal and moisture strains; (2) local or transverse crack tip delamination originating at the tip of transverse matrix cracks; and (3) delamination in tapered composite under tensile loading. Computer codes based on the analytical models were developed and comparisons of predictions with available experimental and analytical results in the literature were performed

    Sublaminate analysis of interlaminar fracture in composites

    Get PDF
    A simple analysis method based upon a transverse shear deformation theory and a sublaminate approach is utilized to analyze a mixed-mode edge delamination specimen. The analysis provides closed form expressions for the interlaminar shear stresses ahead of the crack, the total energy release rate, and the energy release rate components. The parameters controlling the behavior are identified. The effect of specimen stacking sequence and delamination interface on the strain energy release rate components is investigated. Results are compared with a finite element simulation for reference. The simple nature of the method makes it suitable for preliminary design analyses which require a large number of configurations to be evaluated quickly and economically

    A structural model for composite rotor blades and lifting surfaces

    Get PDF
    Composite material systems are currently candidates for aerospace structures, primarily for the design flexibiity they offer i.e., it is possible to tailor the material and manufacturing approach to the application. Two notable examples are the wing of the Grumman/USAF/DARPA X-29 and rotor blades under development by the U.S.A. Aerostructures Directorate (AVSCOM), Langley Research Center. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to improve the single-cell beam model for composite rotor blades or lifting surfaces and to demonstrate its usefullness in applications

    Structural modeling for multicell composite rotor blades

    Get PDF
    Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases

    Simple theoretical models for composite rotor blades

    Get PDF
    The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity

    Modeling and analysis methodology for aeroelastically tailored chordwise deformable wings

    Get PDF
    Structural concepts have been created which produce chordwise camber deformation that results in enhanced lift. A wing box can be tailored to utilize each of these with composites. In attempting to optimize the aerodynamic benefits, we have found there are two optimal designs that are of interest. There is a weight optimum which corresponds to the maximum lift per unit structural weight. There is also a lift optimum that corresponds to maximum absolute lift. New structural models, the basic deformation mechanisms that are utilized and typical analytical results are presented. It appears that lift enhancements of sufficient magnitude can be produced to render this type of wing tailoring of practical interest. Experiments and finite element correlations are performed which confirm the validity of the theoretical models utilized

    Tailored composite wings with elastically produced chordwise camber

    Get PDF
    Four structural concepts were created which produce chordwise camber deformation that results in enhanced lift. A wing box can be tailored to utilize each of these with composites. In attempting to optimize the aerodynamic benefits, researchers found that there are two optimum designs that are of interest. There is a weight optimum which corresponds to the maximum lift per unit structural weight. There is also a lift optimum that corresponds to maximum absolute lift. Experience indicates that a large weight penalty accompanies the transition from weight to lift optimum designs. New structural models, the basic deformation mechanisms that are utilized, and typical analytical results are presented. It appears that lift enhancements of sufficient magnitude can be produced to render this type of wing tailoring of practical interest

    Some observations on the behavior of the Langley model rotor blade

    Get PDF
    The design of the model rotor and the comparative study of coupled beam theory and the finite element analysis performed earlier at the Aerostructures Directorate by Robert Hodges and Mark Nixon is examined. Attention is focused upon two matters: (1) an examination of the small discrepancies between twist angle predictions under pure torque and radial loading, and (2) an assessment of nonclassical effects in bending behavior. The primary objective is understanding, particularly with regard to cause and effect relationships. Understanding, together with the simple, affordable nature of the coupled beam analysis, provides a sound basis for design

    Analysis, design and elastic tailoring of composite rotor blades

    Get PDF
    The development of structural models for composite rotor blades is summarized. The models are intended for use in design analysis for the purpose of exploring the potential of elastic tailoring. The research was performed at the Center for Rotary Wing Aircraft Technology
    corecore