15,052 research outputs found
A radio continuum survey of the southern sky at 1420 MHz. Observations and data reduction
We describe the equipment, observational method and reduction procedure of an
absolutely calibrated radio continuum survey of the South Celestial Hemisphere
at a frequency of 1420 MHz. These observations cover the area 0h < R.A. < 24h
for declinations less than -10 degree. The sensitivity is about 50 mK T_B (full
beam brightness) and the angular resolution (HPBW) is 35.4', which matches the
existing northern sky survey at the same frequency.Comment: 9 pages with 9 figures, A&A, in pres
Observation of magnetism in Au thin films
Direct magnetization measurements of thin gold films are presented. These
measurements integrate the signal from the thin film under study and the
magnetic contribution of the film's interface with the substrate. The
diamagnetic contribution to the signal from the bulk substrate is of the same
order as the noise level. we find that thin gold films can exhibit positive
magnetization. The character of their magnetic behavior is strongly substrate
dependent.Comment: 9 pages, 4 figure
Spectral Index of the Diffuse Radio Background Measured From 100 to 200 MHz
The mean absolute brightness temperature of the diffuse radio background was
measured as a function of frequency in a continuous band between 100 and 200
MHz over an effective solid angle of ~pi str at high Galactic latitude. A
spectral brightness temperature index of beta = 2.5 +/- 0.1 (alpha_s = 0.5) was
derived from the observations, where the error limits are 3-sigma and include
estimates of the instrumental systematics. Zenith drift scans with central
declinations of -26.5 degrees and spanning right ascensions 0 to 10 hours
yielded little variation in the mean spectral index. The mean absolute
brightness temperature at 150 MHz was found to reach a minimum of T = 237 +/-
10 K at a right ascension of 2.5 hours. Combining these measurements with those
of Haslam et al. 1982 yields a spectral index of beta = 2.52 +/- 0.04 between
150 and 408 MHz.Comment: 8 pages including 7 figures and 4 tables. Accepted by A
HI ``Tails'' from Cometary Globules in IC1396
IC 1396 is a relatively nearby (750 pc), large (>2 deg), HII region ionized
by a single O6.5V star and containing bright-rimmed cometary globules. We have
made the first arcmin resolution images of atomic hydrogen toward IC 1396, and
have found remarkable ``tail''-like structures associated with some of the
globules and extending up to 6.5 pc radially away from the central ionizing
star. These HI ``tails'' may be material which has been ablated from the
globule through ionization and/or photodissociation and then accelerated away
from the globule by the stellar wind, but which has since drifted into the
``shadow'' of the globules.
This report presents the first results of the Galactic Plane Survey Project
recently begun by the Dominion Radio Astrophysical Observatory.Comment: 11 pages, 5 postscript figures, uses aaspp4.sty macros, submitted in
uuencoded gzipped tar format, accepted for publication in Astrophysical
Journal Letters, colour figures available at
http://www.drao.nrc.ca/~schieven/news_sep95/ic1396.htm
Exciton binding energies in carbon nanotubes from two-photon photoluminescence
One- and two-photon luminescence excitation spectroscopy showed a series of
distinct excitonic states in single-walled carbon nanotubes. The energy
splitting between one- and two-photon-active exciton states of different
wavefunction symmetry is the fingerprint of excitonic interactions in carbon
nanotubes. We determine exciton binding energies of 0.3-0.4 eV for different
nanotubes with diameters between 0.7 and 0.9 nm. Our results, which are
supported by ab-initio calculations of the linear and non-linear optical
spectra, prove that the elementary optical excitations of carbon nanotubes are
strongly Coulomb-correlated, quasi-one dimensionally confined electron-hole
pairs, stable even at room temperature. This alters our microscopic
understanding of both the electronic structure and the Coulomb interactions in
carbon nanotubes, and has direct impact on the optical and transport properties
of novel nanotube devices.Comment: 5 pages, 4 figure
A New System of Parallel Isolated Nonthermal Filaments Near the Galactic Center: Evidence for a Local Magnetic Field Gradient
We report the discovery of a system of isolated nonthermal filaments
approximately 0.5 deg. northwest (75 pc in projection) of Sgr A. Unlike other
isolated nonthermal filaments which show subfilamentation, braiding of
subfilaments, and flaring at their ends, these filaments are simple linear
structures and more closely resemble the parallel bundled filaments in the
Galactic center radio arc. However, the most unusual feature of these filaments
is that the 20/90 cm spectral index uniformly decreases as a function of
length, in contrast to all other nonthermal filaments in the Galactic center.
This spectral gradient may not be due to simple particle aging but could be
explained by a curved electron energy spectrum embedded in a diverging magnetic
field. If so, the scale of the magnetic gradient is not consistent with a large
scale magnetic field centered on Sgr A* suggesting that this filament system is
tracing a local magnetic field.Comment: 10 pages, AASTeX 5.01 LaTeX2e; 7 figures in 9 PostScript files;
scheduled for publication in the 2001 December 10, v. 563 issue of Ap
One-dimensional pinning behavior in Co-doped BaFe2As2 thin films
Angle-resolved transport measurements revealed that planar defects dominate
flux pinning in the investigated Co-doped BaFe2As2 thin film. For any given
field and temperature, the critical current depends only on the angle between
the crystallographic c-axis and the applied magnetic field but not on the angle
between the current and the field. The critical current is therefore limited
only by the in-plane component of the Lorentz force but independent of the
out-of-plane component, which is entirely balanced by the pinning force exerted
by the planar defects. This one-dimensional pinning behavior shows similarities
and differences to intrinsic pinning in layered superconductors.Comment: 8 pages, 6 figure
Scaling of the conductance in gold nanotubes
A new form of gold nanobridges has been recently observed in ultrahigh-vacuum
experiments, where the gold atoms rearrange to build helical nanotubes, akin in
some respects to carbon nanotubes. The good reproducibility of these wires and
their unexpected stability will allow for conductance measurements and make
them promising candidates for future applications . We present here a study of
the transport properties of these nanotubes in order to understand the role of
chirality and of the different orbitals in quantum transport observables. The
conductance per atomic row shows a light decreasing trend as the diameter
grows, which is also shown through an analytical formula based on a one-orbital
model.Comment: 5 pages, 6 figure
- …
