201 research outputs found
Transformational Leader: What Does it Take to be One?
Transformational leadership has been the topic of hundreds of articles and books over the past 20 years. It has been thoroughly researched empirically, however with every study more question are brought to light. It is crucial to know the elements required for a leader to be truly transformational. This paper takes the opinions of what Bass believes are the essential elements to create another opinion. Also, the environment where a transformational leader is most effective is also evaluated. Through the analysis of several empirical studies and related research it has been concluded that the essential elements of a transformational leader are Individualized Consideration, Charisma, Intellectual Stimulation, Emotional Intelligence, Ethical Values, Moral Character, and Integrity. Additionally, from the information that was gathered, it is concluded that the Team Based influence approach is the most effective method of the 5 methods that were studied
The effects of CO2, climate and land-use on terrestrial carbon balance, 1920-1992: An analysis with four process-based ecosystem models
The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920–1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr−1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects. The next steps for improving the process-based simulation of historical terrestrial carbon include (1) the transfer of insight gained from stand-level process studies to improve the sensitivity of simulated carbon storage responses to changes in CO2 and climate, (2) improvements in the data sets used to drive the models so that they incorporate the timing, extent, and types of major disturbances, (3) the enhancement of the models so that they consider major crop types and management schemes, (4) development of data sets that identify the spatial extent of major crop types and management schemes through time, and (5) the consideration of the effects of anthropogenic nitrogen deposition. The evaluation of the performance of the models in the context of a more complete consideration of the factors influencing historical terrestrial carbon dynamics is important for reducing uncertainties in representing the role of terrestrial ecosystems in future projections of the Earth system
A comprehensive dataset of vegetation states, fluxes of matter and energy, weather, agricultural management, and soil properties from intensively monitored crop sites in western Germany
Data description paperThe development and validation of hydroecological land-surface models to simulate agricultural areas require extensive data on weather, soil properties, agricultural management, and vegetation states and fluxes. However, these comprehensive data are rarely available since measurement, quality control, documentation, and compilation of the different data types are costly in terms of time and money. Here, we present a comprehensive dataset, which was collected at four agricultural sites within the Rur catchment in western Germany in the framework of the Transregional Collaborative Research Centre 32 (TR32) "Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modeling and Data Assimilation". Vegetation-related data comprise fresh and dry biomass (green and brown, predominantly per organ), plant height, green and brown leaf area index, phenological development state, nitrogen and carbon content (overall > 17 000 entries), and masses of harvest residues and regrowth of vegetation after harvest or before planting of the main crop (> 250 entries). Vegetation data including LAI were collected in frequencies of 1 to 3 weeks in the years 2015 until 2017, mostly during overflights of the Sentinel 1 and Radarsat 2 satellites. In addition, fluxes of carbon, energy, and water (> 180 000 half-hourly records) measured using the eddy covariance technique are included. Three flux time series have simultaneous data from two different heights. Data on agricultural management include sowing and harvest dates as well as information on cultivation, fertilization, and agrochemicals (27 management periods). The dataset also includes gap-filled weather data (> 200 000 hourly records) and soil parameters (particle size distributions, carbon and nitrogen content; > 800 records). These data can also be useful for development and validation of remote-sensing products. The dataset is hosted at the TR32 database (https://www.tr32db.uni-koeln.de/data.php?dataID=1889, last access: 29 September 2020) and has the DOI https://doi.org/10.5880/TR32DB.39 (Reichenau et al., 2020).Peer reviewe
Simulation of spatial variability in crop leaf area index and yield using agroecosystem modeling and geophysics-based quantitative soil information
Agroecosystem models that simulate crop growth as a function of weather conditionsand soil characteristics are among the most promising tools for improving crop yield and achieving more sustainable agricultural production systems. This study aims at using spatially distributed crop growth simulations to investigate how field-scale patterns in soil properties obtained using geophysical mapping affect the spatial variability of soil water content dynamics and growth of crops at the square kilometer scale. For this, a geophysics-based soil map was intersected with land use information. Soilhydraulic parameters were calculated using pedotransfer functions. Simulations of soilwater content dynamics performed with the agroecosystem model AgroC were com-pared with soil water content measured at two locations, resulting in RMSE of 0.032and of 0.056 cm3cm−3, respectively. The AgroC model was then used to simulate thegrowth of sugar beet (Beta vulgaris L.), silage maize (Zea maysL.), potato (SolanumtuberosumL.), winter wheat (Triticum aestivumL.), winter barley (Hordeum vulgareL.), and winter rapeseed (Brassica napusL.) in the 1- by 1-km study area. It was found that the simulated leaf area index (LAI) was affected by the magnitude of simulated water stress, which was a function of both the crop type and soil characteristics. Simulated LAI was generally consistent with the observed LAI calculated from normalized difference vegetation index (LAINDVI) obtained from RapidEye satellite data. Finally, maps of simulated agricultural yield were produced for four crops, and it was found that simulated yield matched well with actual harvest data and literature values. Therefore, it was concluded that the information obtained from geophysics-based soilmapping was valuable for practical agricultural applications
A Unique Population of Cave Bears (Carnivora: Ursidae) from the Middle Pleistocene of Kents Cavern, England, Based on Dental Morphometrics
The ‘breccia’ stratum from Kents (we follow local tradition in using the form ‘Kents’, without an apostrophe) Cavern, England, has been well known for its rich yield of cave-bear material since excavations began in the mid-19th century. Recent work has established that the bears are of latest MIS 12 or earliest MIS 11 age. A life table based on a collection of 67 molariform teeth is consistent with the use of the cave as a hibernaculum. Univariate and morphological assessment of the teeth shows an unusual range of primitive and more derived characters. Multivariate morphometric analysis of cave-bear teeth from the site demonstrates that these animals, while currently assignable to Ursus deningeri sensu lato, are nevertheless morphologically distinct and not simply late deningeri on a hypothetical chronospecific continuum
Vergleich datenbasierter und instrumenteller Ansätze zum Source-Partitioning von Kohlenstoffdioxidflüssen in einem Winterweizenbestand
Wie reagiert die Biosphäre auf den Globalen Wandel und die lokale Landbewirtschaftung, und wie wirkt sie sich wiederum auf den Klimawandel aus? Die Landoberfläche kann zum jetzigen Zeitpunkt ca. 33 % (±17 %) des Kohlenstoffdioxids (CO2) aus der Verbrennung fossiler Brennstoffe aufnehmen. Dem gegenüber steht allerdings eine zusätzliche CO2-Abgabe von 14 % (±10 %) aus Landnutzungsänderungen (IPCC 2013). Photosynthetische CO2-Aufnahme und respiratorische CO2-Abgabe werden unterschiedlich von Umweltfaktoren wie Temperatur, CO2-Konzentration, und Wasserverfügbarkeit beeinflusst. Diese Faktoren sind wiederum dem globalen Wandel unterworfen. Um diese Wechselwirkungen analysieren zu können, müssen Nettoflüsse von Treibhausgasen, wie sie beispielsweise mit der Eddy-Kovarianz-Methode gemessen werden können, in ihre Einzelbeiträge zerlegt werden. Derartige Versuche, den CO2-Fluss in Photosynthese und Respiration oder den latenten Wärmefluss in Evaporation und Transpiration aufzuschlüsseln, werden unter dem Begriff “Source Partitioning” zusammengefasst.Das BMBF-geförderte Forschungsprojekt IDAS-GHG (Instrumental and Data-driven Approaches to Source-Partitioning of Greenhouse Gas Fluxes: Comparison, Combination, Advancement) hat die Zielsetzung, existierende Ansätze zum Source-Partitioning von Treibhausgasflüssen systematisch miteinander zu vergleichen und zu verbessern. Diese lassen sich in zwei Gruppen gliedern: Datenbasierte Ansätze nutzen bestehende (Roh)daten aus der Eddy-Kovarianz-Messung. Instrumentelle Ansätze hingegen beinhalten die Durchführung zusätzlicher Messungen, wie z. B. Kammer- und Profilmessungen, oder die Verwendung von Tracern (z. B. stabile Isotope), die Auskunft über die Herkunft der Gasmoleküle geben können.In unserer Präsentation werden einige dieser Methoden am Beispiel des Messstandorts Selhausen beschrieben. Der Standort befindet sich im TERENO-Observatorium Eifel/Niederrheinische Bucht in der intensiv landwirtschaftlich genutzten niederrheinischen Bördelandschaft. Der Untersuchungszeitraum erstreckt sich über die Vegetationsperiode eines Winterweizenfeldes von der Aussaat im Oktober 2014 über die Ernte hinaus bis Ende September 2015. Im Messfeld installiert ist eine dauerhafte Eddy-Kovarianz-Station und ein automatisches Bodenrespirations-Kammersystem mit bis zu vier Langzeitkammern. Zusätzlich wurden stichprobenartig Profilmessungen der CO2- und H2O-Konzentrationen mit einem eigens gebauten Liftsystem durchgeführt.Mithilfe der gemessenen Eddy-Kovarianz-Daten zeigen wir einen Vergleich bestehender Ansätze zum Source-Partitioning des Netto-Ökosystem-Austauschs in Bruttoprimärproduktion (Photosynthese) und Ökosystematmung (Respiration). Unter Verwendung von Kammermessungen wird dieser um die Terme Nettoprimärproduktion und Bodenrespiration erweitert.Das Profilsystem misst Änderungen der Konzentration von CO2 und H2O mit einer hohen vertikalen und zeitlichen Auflösung zwischen Bodenoberfläche, Pflanzenbestand und Atmosphäre. Die Profile im Halbstundenmittel bilden den Effekt der photosynthetischen Kohlenstoff-Assimilation und Bodenatmung deutlich ab und geben somit qualitative Informationen über Quell- und Senkbereiche. Im nächsten Schritt wird versucht, diese zu quantifizieren und mit den bereits beschriebenen Ansätzen zu vergleichen
- …
