119 research outputs found

    Multigenomic Delineation of Plasmodium Species of the Laverania Subgenus Infecting Wild-living Chimpanzees and Gorillas

    Get PDF
    Plasmodium falciparum, the major cause of malaria morbidity and mortality worldwide, is only distantly related to other human malaria parasites and has thus been placed in a separate subgenus, termed Laverania. Parasites morphologically similar to P. falciparum have been identified in African apes, but only one other Laverania species, Plasmodium reichenowi from chimpanzees, has been formally described. Although recent studies have pointed to the existence of additional Laverania species, their precise number and host associations remain uncertain, primarily because of limited sampling and a paucity of parasite sequences other than from mitochondrial DNA. To address this, we used limiting dilution polymerase chain reaction to amplify additional parasite sequences from a large number of chimpanzee and gorilla blood and fecal samples collected at two sanctuaries and 30 field sites across equatorial Africa. Phylogenetic analyses of more than 2,000 new sequences derived from the mitochondrial, nuclear, and apicoplast genomes revealed six divergent and well-supported clades within the Laverania parasite group. Although two of these clades exhibited deep subdivisions in phylogenies estimated from organelle gene sequences, these sublineages were geographically defined and not present in trees from four unlinked nuclear loci. This greatly expanded sequence data set thus confirms six, and not seven or more, ape Laverania species, of which P. reichenowi, Plasmodium gaboni, and Plasmodium billcollinsi only infect chimpanzees, whereas Plasmodium praefalciparum, Plasmodium adleri, and Pladmodium blacklocki only infect gorillas. The new sequence data also confirm the P. praefalciparum origin of human P. falciparum

    Variation in Phenotype, Parasite Load and Male Competitive Ability across a Cryptic Hybrid Zone

    Get PDF
    BackgroundMolecular genetic studies are revealing an increasing number of cryptic lineages or species, which are highly genetically divergent but apparently cannot be distinguished morphologically. This observation gives rise to three important questions: 1) have these cryptic lineages diverged in phenotypic traits that may not be obvious to humans; 2) when cryptic lineages come into secondary contact, what are the evolutionary consequences: stable co-existence, replacement, admixture or differentiation and 3) what processes influence the evolutionary dynamics of these secondary contact zones?Methodology/principal findingsTo address these questions, we first tested whether males of the Iberian lizard Lacerta schreiberi from two highly genetically divergent, yet morphologically cryptic lineages on either side of an east-west secondary contact could be differentiated based on detailed analysis of morphology, coloration and parasite load. Next, we tested whether these differences could be driven by pre-copulatory intra-sexual selection (male-male competition). Compared to eastern males, western males had fewer parasites, were in better body condition and were more intensely coloured. Although subtle environmental variation across the hybrid zone could explain the differences in parasite load and body condition, these were uncorrelated with colour expression, suggesting that the differences in coloration reflect heritable divergence. The lineages did not differ in their aggressive behaviour or competitive ability. However, body size, which predicted male aggressiveness, was positively correlated with the colour traits that differed between genetic backgrounds.Conclusions/significanceOur study confirms that these cryptic lineages differ in several aspects that are likely to influence fitness. Although there were no clear differences in male competitive ability, our results suggest a potential indirect role for intra-sexual selection. Specifically, if lizards use the colour traits that differ between genetic backgrounds to assess the size of potential rivals or mates, the resulting fitness differential favouring western males could result in net male-mediated gene flow from west to east across the current hybrid zone.Devi Stuart-Fox, Raquel Godinho, Joëlle Goüy de Bellocq, Nancy R. Irwin, José Carlos Brito, Adnan Moussalli, Pavel Široký, Andrew F. Hugall and Stuart J. E. Bair

    Ape parasite origins of human malaria virulence genes

    Get PDF
    Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using select whole-genome amplification, we also find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that the modular genetic architecture and sequence diversity underlying var-mediated host-parasite interactions evolved before the radiation of the Laverania subgenus, long before the emergence of P. falciparum

    Beziehungen zwischen menschlichen und tierischen Infektionen in Afrika

    Full text link

    Neue Namenliste der Vögel Deutschalands

    No full text
    corecore