4,088 research outputs found
Collision of Polymers in a Vacuum
In a number of experimental situations, single polymer molecules can be
suspended in a vacuum. Here collisions between such molecules are considered.
The limit of high collision velocity is investigated numerically for a variety
of conditions. The distribution of contact times, scattering angles, and final
velocities are analyzed. In this limit, self avoiding chains are found to
become highly stretched as they collide with each other, and have a
distribution of scattering times that depends on the scattering angle. The
velocity of the molecules after the collisions is similar to predictions of a
model assuming thermal equilibration of molecules during the collision. The
most important difference is a significant subset of molecules that
inelastically scatter but do not substantially change direction.Comment: 7 pages, 6 figure
Discontinuous percolation transitions in real physical systems
We study discontinuous percolation transitions (PT) in the diffusion-limited
cluster aggregation model of the sol-gel transition as an example of real
physical systems, in which the number of aggregation events is regarded as the
number of bonds occupied in the system. When particles are Brownian, in which
cluster velocity depends on cluster size as with
, a larger cluster has less probability to collide with other
clusters because of its smaller mobility. Thus, the cluster is effectively more
suppressed in growth of its size. Then the giant cluster size increases
drastically by merging those suppressed clusters near the percolation
threshold, exhibiting a discontinuous PT. We also study the tricritical
behavior by controlling the parameter , and the tricritical point is
determined by introducing an asymmetric Smoluchowski equation.Comment: 5 pages, 5 figure
On black hole thermalization, D0 brane dynamics, and emergent spacetime
When matter falls past the horizon of a large black hole, the expectation
from string theory is that the configuration thermalizes and the information in
the probe is rather quickly scrambled away. The traditional view of a classical
unique spacetime near a black hole horizon conflicts with this picture. The
question then arises as to what spacetime does the probe actually see as it
crosses a horizon, and how does the background geometry imprint its signature
onto the thermal properties of the probe. In this work, we explore these
questions through an extensive series of numerical simulations of D0 branes. We
determine that the D0 branes quickly settle into an incompressible symmetric
state -- thermalized within a few oscillations through a process driven
entirely by internal non-linear dynamics. Surprisingly, thermal background
fluctuations play no role in this mechanism. Signatures of the background
fields in this thermal state arise either through fluxes, i.e. black hole hair;
or if the probe expands to the size of the horizon -- which we see evidence of.
We determine simple scaling relations for the D0 branes' equilibrium size, time
to thermalize, lifetime, and temperature in terms of their number, initial
energy, and the background fields. Our results are consistent with the
conjecture that black holes are the fastest scramblers as seen by Matrix
theory.Comment: 43 pages, 12 figures; v2: added analysis showing that results are
consistent with and confirm Susskind conjecture on black hole thermalization.
Added clarification about strong coupling regime. Citation adde
Energy distribution and cooling of a single atom in an optical tweezer
We investigate experimentally the energy distribution of a single rubidium
atom trapped in a strongly focused dipole trap under various cooling regimes.
Using two different methods to measure the mean energy of the atom, we show
that the energy distribution of the radiatively cooled atom is close to
thermal. We then demonstrate how to reduce the energy of the single atom, first
by adiabatic cooling, and then by truncating the Boltzmann distribution of the
single atom. This provides a non-deterministic way to prepare atoms at low
microKelvin temperatures, close to the ground state of the trapping potential.Comment: 9 pages, 6 figures, published in PR
Collective pinning of imperfect vortex lattices by material line defects in extreme type-II superconductors
The critical current density shown by a superconductor at the extreme type-II
limit is predicted to follow an inverse square-root power law with external
magnetic field if the vortex lattice is weakly pinned by material line defects.
It acquires an additional inverse dependence with thickness along the line
direction once pinning of the interstitial vortex lines by material point
defects is included. Moderate quantitative agreement with the critical current
density shown by second-generation wires of high-temperature superconductors in
kG magnetic fields is achieved at liquid-nitrogen temperature.Comment: 10 pages, 3 figures, 2 tables. To appear in Physical Review
A Paradox of State-Dependent Diffusion and How to Resolve It
Consider a particle diffusing in a confined volume which is divided into two
equal regions. In one region the diffusion coefficient is twice the value of
the diffusion coefficient in the other region. Will the particle spend equal
proportions of time in the two regions in the long term? Statistical mechanics
would suggest yes, since the number of accessible states in each region is
presumably the same. However, another line of reasoning suggests that the
particle should spend less time in the region with faster diffusion, since it
will exit that region more quickly. We demonstrate with a simple microscopic
model system that both predictions are consistent with the information given.
Thus, specifying the diffusion rate as a function of position is not enough to
characterize the behaviour of a system, even assuming the absence of external
forces. We propose an alternative framework for modelling diffusive dynamics in
which both the diffusion rate and equilibrium probability density for the
position of the particle are specified by the modeller. We introduce a
numerical method for simulating dynamics in our framework that samples from the
equilibrium probability density exactly and is suitable for discontinuous
diffusion coefficients.Comment: 21 pages, 6 figures. Second round of revisions. This is the version
that will appear in Proc Roy So
The chemical equilibration volume: measuring the degree of thermalization
We address the issue of the degree of equilibrium achieved in a high energy
heavy-ion collision. Specifically, we explore the consequences of incomplete
strangeness chemical equilibrium. This is achieved over a volume V of the order
of the strangeness correlation length and is assumed to be smaller than the
freeze-out volume. Probability distributions of strange hadrons emanating from
the system are computed for varying sizes of V and simple experimental
observables based on these are proposed. Measurements of such observables may
be used to estimate V and as a result the degree of strangeness chemical
equilibration achieved. This sets a lower bound on the degree of kinetic
equilibrium. We also point out that a determination of two-body correlations or
second moments of the distributions are not sufficient for this estimation.Comment: 16 pages, 15 figures, revtex
The Nature of Radio Continuum Emission in the Dwarf Starburst Galaxy NGC 625
We present new multi-frequency radio continuum imaging of the dwarf starburst
galaxy NGC 625 obtained with the Very Large Array. Data at 20, 6, and 3.6 cm
reveal global continuum emission dominated by free-free emission, with only
mild synchrotron components. Each of the major HII regions is detected; the
individual spectral indices are thermal for the youngest regions (showing
strongest H Alpha emission) and nonthermal for the oldest. We do not detect any
sources that appear to be associated with deeply embedded, dense, young
clusters, though we have discovered one low-luminosity, obscured source that
has no luminous optical counterpart and which resides in the region of highest
optical extinction. Since NGC 625 is a Wolf-Rayet galaxy with strong recent
star formation, these radio properties suggest that the youngest star formation
complexes have not yet evolved to the point where their thermal spectra are
significantly contaminated by synchrotron emission. The nonthermal components
are associated with regions of older star formation that have smaller ionized
gas components. These results imply a range of ages of the HII regions and
radio components that agrees with our previous resolved stellar population
analysis, where an extended burst of star formation has pervaded the disk of
NGC 625 over the last ~ 50 Myr. We compare the nature of radio continuum
emission in selected nearby dwarf starburst and Wolf-Rayet galaxies,
demonstrating that thermal radio continuum emission appears to be more common
in these systems than in typical HII galaxies with less recent star formation
and more evolved stellar clusters.Comment: ApJ, in press; 27 pages, 5 figures. Full-resolution version may be
obtained at http://www.astro.umn.edu/~cannon/n625.vla.p
Quasi-Particle Degrees of Freedom versus the Perfect Fluid as Descriptors of the Quark-Gluon Plasma
The hot nuclear matter created at the Relativistic Heavy Ion Collider (RHIC)
has been characterized by near-perfect fluid behavior. We demonstrate that this
stands in contradiction to the identification of QCD quasi-particles with the
thermodynamic degrees of freedom in the early (fluid) stage of heavy ion
collisions. The empirical observation of constituent quark ``'' scaling of
elliptic flow is juxtaposed with the lack of such scaling behavior in
hydrodynamic fluid calculations followed by Cooper-Frye freeze-out to hadrons.
A ``quasi-particle transport'' time stage after viscous effects break down the
hydrodynamic fluid stage, but prior to hadronization, is proposed to reconcile
these apparent contradictions. However, without a detailed understanding of the
transitions between these stages, the ``'' scaling is not a necessary
consequence of this prescription. Also, if the duration of this stage is too
short, it may not support well defined quasi-particles. By comparing and
contrasting the coalescence of quarks into hadrons with the similar process of
producing light nuclei from nucleons, it is shown that the observation of
``'' scaling in the final state does not necessarily imply that the
constituent degrees of freedom were the relevant ones in the initial state.Comment: 9 pages, 7 figures, Updated text and figure
Elementary simulation of tethered Brownian motion
We describe a simple numerical simulation, suitable for an undergraduate
project (or graduate problem set), of the Brownian motion of a particle in a
Hooke-law potential well. Understanding this physical situation is a practical
necessity in many experimental contexts, for instance in single molecule
biophysics; and its simulation helps the student to appreciate the dynamical
character of thermal equilibrium. We show that the simulation succeeds in
capturing behavior seen in experimental data on tethered particle motion.Comment: Submitted to American Journal of Physic
- …
