21,270 research outputs found

    Typicality of pure states randomly sampled according to the Gaussian adjusted projected measure

    Full text link
    Consider a mixed quantum mechanical state, describing a statistical ensemble in terms of an arbitrary density operator ρ\rho of low purity, \tr\rho^2\ll 1, and yielding the ensemble averaged expectation value \tr(\rho A) for any observable AA. Assuming that the given statistical ensemble ρ\rho is generated by randomly sampling pure states ψ>|\psi> according to the corresponding so-called Gaussian adjusted projected measure [[Goldstein et al., J. Stat. Phys. 125, 1197 (2006)]], the expectation value is shown to be extremely close to the ensemble average \tr(\rho A) for the overwhelming majority of pure states ψ>|\psi> and any experimentally realistic observable AA. In particular, such a `typicality' property holds whenever the Hilbert space \hr of the system contains a high dimensional subspace \hr_+\subset\hr with the property that all |\psi>\in\hr_+ are realized with equal probability and all other |\psi> \in\hr are excluded.Comment: accepted for publication in J. Stat. Phy

    The Process of price formation and the skewness of asset returns

    Full text link
    Distributions of assets returns exhibit a slight skewness. In this note we show that our model of endogenous price formation \cite{Reimann2006} creates an asymmetric return distribution if the price dynamics are a process in which consecutive trading periods are dependent from each other in the sense that opening prices equal closing prices of the former trading period. The corresponding parameter α\alpha is estimated from daily prices from 01/01/1999 - 12/31/2004 for 9 large indices. For the S&P 500, the skewness distribution of all its constituting assets is also calculated. The skewness distribution due to our model is compared with the distribution of the empirical skewness values of the ingle assets.Comment: 9 pages, 2 figure

    Wavefunction localization and its semiclassical description in a 3-dimensional system with mixed classical dynamics

    Full text link
    We discuss the localization of wavefunctions along planes containing the shortest periodic orbits in a three-dimensional billiard system with axial symmetry. This model mimicks the self-consistent mean field of a heavy nucleus at deformations that occur characteristically during the fission process [1,2]. Many actinide nuclei become unstable against left-right asymmetric deformations, which results in asymmetric fragment mass distributions. Recently we have shown [3,4] that the onset of this asymmetry can be explained in the semiclassical periodic orbit theory by a few short periodic orbits lying in planes perpendicular to the symmetry axis. Presently we show that these orbits are surrounded by small islands of stability in an otherwise chaotic phase space, and that the wavefunctions of the diabatic quantum states that are most sensitive to the left-right asymmetry have their extrema in the same planes. An EBK quantization of the classical motion near these planes reproduces the exact eigenenergies of the diabatic quantum states surprisingly well.Comment: 4 pages, 5 figures, contribution to the Nobel Symposium on Quantum Chao

    Independence, Relative Randomness, and PA Degrees

    Full text link
    We study pairs of reals that are mutually Martin-L\"{o}f random with respect to a common, not necessarily computable probability measure. We show that a generalized version of van Lambalgen's Theorem holds for non-computable probability measures, too. We study, for a given real AA, the \emph{independence spectrum} of AA, the set of all BB so that there exists a probability measure μ\mu so that μ{A,B}=0\mu\{A,B\} = 0 and (A,B)(A,B) is μ×μ\mu\times\mu-random. We prove that if AA is r.e., then no Δ20\Delta^0_2 set is in the independence spectrum of AA. We obtain applications of this fact to PA degrees. In particular, we show that if AA is r.e.\ and PP is of PA degree so that P̸TAP \not\geq_{T} A, then APT0A \oplus P \geq_{T} 0'

    Finding subsets of positive measure

    Full text link
    An important theorem of geometric measure theory (first proved by Besicovitch and Davies for Euclidean space) says that every analytic set of non-zero ss-dimensional Hausdorff measure Hs\mathcal H^s contains a closed subset of non-zero (and indeed finite) Hs\mathcal H^s-measure. We investigate the question how hard it is to find such a set, in terms of the index set complexity, and in terms of the complexity of the parameter needed to define such a closed set. Among other results, we show that given a (lightface) Σ11\Sigma^1_1 set of reals in Cantor space, there is always a Π10(O)\Pi^0_1(\mathcal{O}) subset on non-zero Hs\mathcal H^s-measure definable from Kleene's O\mathcal O. On the other hand, there are Π20\Pi^0_2 sets of reals where no hyperarithmetic real can define a closed subset of non-zero measure.Comment: This is an extended journal version of the conference paper "The Strength of the Besicovitch--Davies Theorem". The final publication of that paper is available at Springer via http://dx.doi.org/10.1007/978-3-642-13962-8_2
    corecore