3,057 research outputs found
In vitro and in vivo expression of foreign genes by transmissible gastroenteritis coronavirus-derived minigenomes
A helper-dependent expression system based on transmissible gastroenteritis coronavirus (TGEV) has been developed using a minigenome of 3·9 kb (M39). Expression of the reporter gene {beta}-glucuronidase (GUS) (2–8 µg per 106 cells) and the porcine respiratory and reproductive syndrome virus (PRRSV) ORF5 (1–2 µg per 106 cells) has been shown using a TGEV-derived minigenome. GUS expression levels increased about eightfold with the m.o.i. and were maintained for more than eight passages in cell culture. Nevertheless, instability of the GUS and ORF5 subgenomic mRNAs was observed from passages five and four, respectively. About a quarter of the cells in culture expressing the helper virus also produced the reporter gene as determined by studying GUS mRNA production by in situ hybridization or immunodetection to visualize the protein synthesized. Expression of GUS was detected in the lungs, but not in the gut, of swine immunized with the virus vector. Around a quarter of lung cells showing replication of the helper virus were also positive for the reporter gene. Interestingly, strong humoral immune responses to both GUS and PRRSV ORF5 were induced in swine with this virus vector. The large cloning capacity and the tissue specificity of the TGEV-derived minigenomes suggest that these virus vectors are very promising for vaccine development
Energy Flow Puzzle of Soliton Ratchets
We study the mechanism of directed energy transport for soliton ratchets. The
energy flow appears due to the progressive motion of a soliton (kink) which is
an energy carrier. However, the energy current formed by internal system
deformations (the total field momentum) is zero. We solve the underlying puzzle
by showing that the energy flow is realized via an {\it inhomogeneous} energy
exchange between the system and the external ac driving. Internal kink modes
are unambiguously shown to be crucial for that transport process to take place.
We also discuss effects of spatial discretization and combination of ac and dc
external drivings.Comment: 4 pages, 3 figures, submitted to PR
Slice Stretching at the Event Horizon when Geodesically Slicing the Schwarzschild Spacetime with Excision
Slice-stretching effects are discussed as they arise at the event horizon
when geodesically slicing the extended Schwarzschild black-hole spacetime while
using singularity excision. In particular, for Novikov and isotropic spatial
coordinates the outward movement of the event horizon (``slice sucking'') and
the unbounded growth there of the radial metric component (``slice wrapping'')
are analyzed. For the overall slice stretching, very similar late time behavior
is found when comparing with maximal slicing. Thus, the intuitive argument that
attributes slice stretching to singularity avoidance is incorrect.Comment: 5 pages, 2 figures, published version including minor amendments
suggested by the refere
Brownian motion exhibiting absolute negative mobility
We consider a single Brownian particle in a spatially symmetric, periodic
system far from thermal equilibrium. This setup can be readily realized
experimentally. Upon application of an external static force F, the average
particle velocity is negative for F>0 and positive for F<0 (absolute negative
mobility).Comment: 4 pages, 3 figures, to be published in PR
Ultrafast spatio-temporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases
We present a combined theoretical and experimental study of spatio-temporal
propagation effects in terahertz (THz) generation in gases using two-color
ionizing laser pulses. The observed strong broadening of the THz spectra with
increasing gas pressure reveals the prominent role of spatio-temporal reshaping
and of a plasma-induced blue-shift of the pump pulses in the generation
process. Results obtained from (3+1)-dimensional simulations are in good
agreement with experimental findings and clarify the mechanisms responsible for
THz emission
Bayesian feedback control of a two-atom spin-state in an atom-cavity system
We experimentally demonstrate real-time feedback control of the joint
spin-state of two neutral Caesium atoms inside a high finesse optical cavity.
The quantum states are discriminated by their different cavity transmission
levels. A Bayesian update formalism is used to estimate state occupation
probabilities as well as transition rates. We stabilize the balanced two-atom
mixed state, which is deterministically inaccessible, via feedback control and
find very good agreement with Monte-Carlo simulations. On average, the feedback
loops achieves near optimal conditions by steering the system to the target
state marginally exceeding the time to retrieve information about its state.Comment: 4 pages, 4 figure
Full density matrix dynamics for large quantum systems: Interactions, Decoherence and Inelastic effects
We develop analytical tools and numerical methods for time evolving the total
density matrix of the finite-size Anderson model. The model is composed of two
finite metal grains, each prepared in canonical states of differing chemical
potential and connected through a single electronic level (quantum dot or
impurity). Coulomb interactions are either excluded all together, or allowed on
the dot only. We extend this basic model to emulate decoherring and inelastic
scattering processes for the dot electrons with the probe technique. Three
methods, originally developed to treat impurity dynamics, are augmented to
yield global system dynamics: the quantum Langevin equation method, the well
known fermionic trace formula, and an iterative path integral approach. The
latter accommodates interactions on the dot in a numerically exact fashion. We
apply the developed techniques to two open topics in nonequilibrium many-body
physics: (i) We explore the role of many-body electron-electron repulsion
effects on the dynamics of the system. Results, obtained using exact path
integral simulations, are compared to mean-field quantum Langevin equation
predictions. (ii) We analyze aspects of quantum equilibration and
thermalization in large quantum systems using the probe technique, mimicking
elastic-dephasing effects and inelastic interactions on the dot. Here, unitary
simulations based on the fermionic trace formula are accompanied by quantum
Langevin equation calculations
Surmounting Oscillating Barriers
Thermally activated escape over a potential barrier in the presence of
periodic driving is considered. By means of novel time-dependent path-integral
methods we derive asymptotically exact weak-noise expressions for both the
instantaneous and the time-averaged escape rate. The agreement with accurate
numerical results is excellent over a wide range of driving strengths and
driving frequencies.Comment: 4 pages, 4 figure
Magnetic-field density-functional theory (BDFT): lessons from the adiabatic connection
We study the effects of magnetic fields in the context of magnetic field density-functional theory (BDFT), where the energy is a functional of the electron density p and the magnetic field B. We show that this approach is a worthwhile alternative to current-density functional theory (CDFT) and may provide a viable route to the study of many magnetic phenomena using density-functional theory (DFT). The relationship between BDFT and CDFT is developed and clarified within the framework of the four-way correspondence of saddle functions and their convex and concave parents in convex analysis. By decomposing the energy into its Kohn–Sham components, we demonstrate that the magnetizability is mainly determined by those energy components that are related to the density. For existing density functional approximations, this implies that, for the magnetizability, improvements of the density will be more beneficial than introducing a magnetic-field dependence in the correlation functional. However, once a good charge density is achieved, we show that high accuracy is likely only obtainable by including magnetic-field dependence. We demonstrate that adiabatic-connection (AC) curves at different field strengths resemble one another closely provided each curve is calculated at the equilibrium geometry of that field strength. In contrast, if all AC curves are calculated at the equilibrium geometry of the field-free system, then the curves change strongly with increasing field strength due to the increasing importance of static correlation. This holds also for density functional approximations, for which we demonstrate that the main error encountered in the presence of a field is already present at zero field strength, indicating that density-functional approximations may be applied to systems in strong fields, without the need to treat additional static correlation
On the formation of Wigner molecules in small quantum dots
It was recently argued that in small quantum dots the electrons could
crystallize at much higher densities than in the infinite two-dimensional
electron gas. We compare predictions that the onset of spin polarization and
the formation of Wigner molecules occurs at a density parameter to the results of a straight-forward diagonalization of the Hamiltonian
matrix
- …
