3,457 research outputs found

    Existence of axially symmetric static solutions of the Einstein-Vlasov system

    Full text link
    We prove the existence of static, asymptotically flat non-vacuum spacetimes with axial symmetry where the matter is modeled as a collisionless gas. The axially symmetric solutions of the resulting Einstein-Vlasov system are obtained via the implicit function theorem by perturbing off a suitable spherically symmetric steady state of the Vlasov-Poisson system.Comment: 32 page

    Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case - A simple proof for finite extension

    Full text link
    We consider a self-gravitating collisionless gas as described by the Vlasov-Poisson or Einstein-Vlasov system or a self-gravitating fluid ball as described by the Euler-Poisson or Einstein-Euler system. We give a simple proof for the finite extension of spherically symmetric equilibria, which covers all these models simultaneously. In the Vlasov case the equilibria are characterized by a local growth condition on the microscopic equation of state, i.e., on the dependence of the particle distribution on the particle energy, at the cut-off energy E_0, and in the Euler case by the corresponding growth condition on the equation of state p=P(\rho) at \rho=0. These purely local conditions are slight generalizations to known such conditions.Comment: 20 page

    On the steady states of the spherically symmetric Einstein-Vlasov system

    Full text link
    Using both numerical and analytical tools we study various features of static, spherically symmetric solutions of the Einstein-Vlasov system. In particular, we investigate the possible shapes of their mass-energy density and find that they can be multi-peaked, we give numerical evidence and a partial proof for the conjecture that the Buchdahl inequality supr>02m(r)/r<8/9\sup_{r > 0} 2 m(r)/r < 8/9, m(r)m(r) the quasi-local mass, holds for all such steady states--both isotropic {\em and} anisotropic--, and we give numerical evidence and a partial proof for the conjecture that for any given microscopic equation of state--both isotropic {\em and} anisotropic--the resulting one-parameter family of static solutions generates a spiral in the radius-mass diagram.Comment: 34 pages, 18 figures, LaTe

    Formation of trapped surfaces for the spherically symmetric Einstein-Vlasov system

    Full text link
    We consider the spherically symmetric, asymptotically flat, non-vacuum Einstein equations, using as matter model a collisionless gas as described by the Vlasov equation. We find explicit conditions on the initial data which guarantee the formation of a trapped surface in the evolution which in particular implies that weak cosmic censorship holds for these data. We also analyze the evolution of solutions after a trapped surface has formed and we show that the event horizon is future complete. Furthermore we find that the apparent horizon and the event horizon do not coincide. This behavior is analogous to what is found in certain Vaidya spacetimes. The analysis is carried out in Eddington-Finkelstein coordinates.Comment: 2

    Global existence for the spherically symmetric Einstein-Vlasov system with outgoing matter

    Get PDF
    We prove a new global existence result for the asymptotically flat, spherically symmetric Einstein-Vlasov system which describes in the framework of general relativity an ensemble of particles which interact by gravity. The data are such that initially all the particles are moving radially outward and that this property can be bootstrapped. The resulting non-vacuum spacetime is future geodesically complete.Comment: 16 page

    Spherically symmetric steady states of galactic dynamics in scalar gravity

    Full text link
    The kinetic motion of the stars of a galaxy is considered within the framework of a relativistic scalar theory of gravitation. This model, even though unphysical, may represent a good laboratory where to study in a rigorous, mathematical way those problems, like the influence of the gravitational radiation on the dynamics, which are still beyond our present understanding of the physical model represented by the Einstein--Vlasov system. The present paper is devoted to derive the equations of the model and to prove the existence of spherically symmetric equilibria with finite radius.Comment: 13 pages, mistypos correcte

    The Einstein-Vlasov sytem/Kinetic theory

    Get PDF
    The main purpose of this article is to guide the reader to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades where the main focus has been on nonrelativistic- and special relativistic physics, e.g. to model the dynamics of neutral gases, plasmas and Newtonian self-gravitating systems. In 1990 Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (e.g. fluid models). The first part of this paper gives an introduction to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental in order to get a good comprehension of kinetic theory in general relativity.Comment: 31 pages. This article has been submitted to Living Rev. Relativity (http://www.livingreviews.org

    On the Einstein-Vlasov system with hyperbolic symmetry

    Get PDF
    It is shown that a spacetime with collisionless matter evolving from data on a compact Cauchy surface with hyperbolic symmetry can be globally covered by compact hypersurfaces on which the mean curvature is constant and by compact hypersurfaces on which the area radius is constant. Results for the related cases of spherical and plane symmetry are reviewed and extended. The prospects of using the global time coordinates obtained in this way to investigate the global geometry of the spacetimes concerned are discusse

    A non-variational approach to nonlinear stability in stellar dynamics applied to the King model

    Full text link
    In previous work by Y. Guo and G. Rein, nonlinear stability of equilibria in stellar dynamics, i.e., of steady states of the Vlasov-Poisson system, was accessed by variational techniques. Here we propose a different, non-variational technique and use it to prove nonlinear stability of the King model against a class of spherically symmetric, dynamically accessible perturbations. This model is very important in astrophysics and was out of reach of the previous techniques

    Global existence and asymptotic behaviour in the future for the Einstein-Vlasov system with positive cosmological constant

    Full text link
    The behaviour of expanding cosmological models with collisionless matter and a positive cosmological constant is analysed. It is shown that under the assumption of plane or hyperbolic symmetry the area radius goes to infinity, the spacetimes are future geodesically complete, and the expansion becomes isotropic and exponential at late times. This proves a form of the cosmic no hair theorem in this class of spacetimes
    corecore