593 research outputs found
High prevalence of Trichomonas gallinae in wild columbids across western and southern Europe
Avian trichomonosis is known as a widespread disease in columbids and passerines, and recent findings have highlighted the pathogenic character of some lineages found in wild birds. Trichomonosis can affect wild bird populations including endangered species, as has been shown for Mauritian pink pigeons Nesoenas mayeri in Mauritius and suggested for European turtle doves Streptopelia turtur in the UK. However, the disease trichomonosis is caused only by pathogenic lineages of the parasite Trichomonas gallinae. Therefore, understanding the prevalence and distribution of both potentially pathogenic and non-pathogenic T. gallinae lineages in turtle doves and other columbids across Europe is relevant to estimate the potential impact of the disease on a continental scale
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
To gain insight into how mutant huntingtin (mHtt) CAG repeat length modifies Huntington's disease (HD) pathogenesis, we profiled mRNA in over 600 brain and peripheral tissue samples from HD knock-in mice with increasing CAG repeat lengths. We found repeat length-dependent transcriptional signatures to be prominent in the striatum, less so in cortex, and minimal in the liver. Coexpression network analyses revealed 13 striatal and 5 cortical modules that correlated highly with CAG length and age, and that were preserved in HD models and sometimes in patients. Top striatal modules implicated mHtt CAG length and age in graded impairment in the expression of identity genes for striatal medium spiny neurons and in dysregulation of cyclic AMP signaling, cell death and protocadherin genes. We used proteomics to confirm 790 genes and 5 striatal modules with CAG length-dependent dysregulation at the protein level, and validated 22 striatal module genes as modifiers of mHtt toxicities in vivo
Modelling the implications of stopping vector control for malaria control and elimination
Increasing coverage of malaria vector control interventions globally has led to significant reductions in disease burden. However due to its high recurrent cost, there is a need to determine if and when vector control can be safely scaled back after transmission has been reduced.; A mathematical model of Plasmodium falciparum malaria epidemiology was simulated to determine the impact of scaling back vector control on transmission and disease. A regression analysis of simulation results was conducted to derive predicted probabilities of resurgence, severity of resurgence and time to resurgence under various settings. Results indicate that, in the absence of secular changes in transmission, there are few scenarios where vector control can be removed without high expectation of resurgence. These, potentially safe, scenarios are characterized by low historic entomological inoculation rates, successful vector control programmes that achieve elimination or near elimination, and effective surveillance systems with high coverage and effective treatment of malaria cases.; Programmes and funding agencies considering scaling back or withdrawing vector control from previously malaria endemic areas need to first carefully consider current receptivity and other available interventions in a risk assessment. Surveillance for resurgence needs to be continuously conducted over a long period of time in order to ensure a rapid response should vector control be withdrawn
Dissemination and implementation of an educational tool for veterans on complementary and alternative medicine: a case study
Background Predicting when and where pathogens will emerge is difficult, yet, as shown by the recent Ebola and Zika epidemics, effective and timely responses are key. It is therefore crucial to transition from reactive to proactive responses for these pathogens. To better identify priorities for outbreak mitigation and prevention, we developed a cohesive framework combining disparate methods and data sources, and assessed subnational pandemic potential for four viral haemorrhagic fevers in Africa, Crimean–Congo haemorrhagic fever, Ebola virus disease, Lassa fever, and Marburg virus disease. Methods In this multistage analysis, we quantified three stages underlying the potential of widespread viral haemorrhagic fever epidemics. Environmental suitability maps were used to define stage 1, index-case potential, which assesses populations at risk of infection due to spillover from zoonotic hosts or vectors, identifying where index cases could present. Stage 2, outbreak potential, iterates upon an existing framework, the Index for Risk Management, to measure potential for secondary spread in people within specific communities. For stage 3, epidemic potential, we combined local and international scale connectivity assessments with stage 2 to evaluate possible spread of local outbreaks nationally, regionally, and internationally. Findings We found epidemic potential to vary within Africa, with regions where viral haemorrhagic fever outbreaks have previously occurred (eg, western Africa) and areas currently considered non-endemic (eg, Cameroon and Ethiopia) both ranking highly. Tracking transitions between stages showed how an index case can escalate into a widespread epidemic in the absence of intervention (eg, Nigeria and Guinea). Our analysis showed Chad, Somalia, and South Sudan to be highly susceptible to any outbreak at subnational levels. Interpretation Our analysis provides a unified assessment of potential epidemic trajectories, with the aim of allowing national and international agencies to pre-emptively evaluate needs and target resources. Within each country, our framework identifies at-risk subnational locations in which to improve surveillance, diagnostic capabilities, and health systems in parallel with the design of policies for optimal responses at each stage. In conjunction with pandemic preparedness activities, assessments such as ours can identify regions where needs and provisions do not align, and thus should be targeted for future strengthening and support
Estimating Dengue Transmission Intensity from Case-Notification Data from Multiple Countries
Despite being the most widely distributed mosquito-borne viral infection, estimates of dengue transmission intensity and associated burden remain ambiguous. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing the burden of disease and the likely impact of interventions.We estimated the force of infection (λ) and corresponding basic reproduction numbers (R0) by fitting catalytic models to age-stratified incidence data identified from the literature. We compared estimates derived from incidence and seroprevalence data and assessed the level of under-reporting of dengue disease. In addition, we estimated the relative contribution of primary to quaternary infections to the observed burden of dengue disease incidence. The majority of R0 estimates ranged from one to five and the force of infection estimates from incidence data were consistent with those previously estimated from seroprevalence data. The baseline reporting rate (or the probability of detecting a secondary infection) was generally low (<25%) and varied within and between countries.As expected, estimates varied widely across and within countries, highlighting the spatio-temporally heterogeneous nature of dengue transmission. Although seroprevalence data provide the maximum information, the incidence models presented in this paper provide a method for estimating dengue transmission intensity from age-stratified incidence data, which will be an important consideration in areas where seroprevalence data are not available
Epidemiological risk factors for adult dengue in Singapore: an 8-year nested test negative case control study
10.1186/s12879-016-1662-4BMC Infectious Diseases16132
Pere Alberch's developmental morphospaces and the evolution of cognition
In this article we argue for an extension of Pere Alberch's notion of developmental morphospace into the realm of cognition and introduce the notion of cognitive phenotype as a new tool for the evolutionary and developmental study of cognitive abilities
Comparative Analysis of Dengue and Zika Outbreaks Reveals Differences by Setting and Virus.
The pacific islands of Micronesia have experienced several outbreaks of mosquito-borne diseases over the past decade. In outbreaks on small islands, the susceptible population is usually well defined, and there is no co-circulation of pathogens. Because of this, analysing such outbreaks can be useful for understanding the transmission dynamics of the pathogens involved, and particularly so for yet understudied pathogens such as Zika virus. Here, we compared three outbreaks of dengue and Zika virus in two different island settings in Micronesia, the Yap Main Islands and Fais, using a mathematical model of transmission dynamics and making full use of commonalities in disease and setting between the outbreaks. We found that the estimated reproduction numbers for Zika and dengue were similar when considered in the same setting, but that, conversely, reproduction number for the same disease can vary considerably by setting. On the Yap Main Islands, we estimated a reproduction number of 8.0-16 (95% Credible Interval (CI)) for the dengue outbreak and 4.8-14 (95% CI) for the Zika outbreak, whereas for the dengue outbreak on Fais our estimate was 28-102 (95% CI). We further found that the proportion of cases of Zika reported was smaller (95% CI 1.4%-1.9%) than that of dengue (95% CI: 47%-61%). We confirmed these results in extensive sensitivity analysis. They suggest that models for dengue transmission can be useful for estimating the predicted dynamics of Zika transmission, but care must be taken when extrapolating findings from one setting to another
Inferences about spatiotemporal variation in dengue virus transmission are sensitive to assumptions about human mobility: a case study using geolocated tweets from Lahore, Pakistan
Billions of users of mobile phones, social media platforms, and other technologies generate an increasingly large volume of data that has the potential to be leveraged towards solving public health challenges. These and other big data resources tend to be most successful in epidemiological applications when utilized within an appropriate conceptual framework. Here, we demonstrate the importance of assumptions about host mobility in a framework for dynamic modeling of infectious disease spread among districts within a large urban area. Our analysis focused on spatial and temporal variation in the transmission of dengue virus (DENV) during a series of large seasonal epidemics in Lahore, Pakistan during 2011–2014. Similar to many directly transmitted diseases, DENV transmission occurs primarily where people spend time during daytime hours, given that DENV is transmitted by a day-biting mosquito. We inferred spatiotemporal variation in DENV transmission under five different assumptions about mobility patterns among ten districts of Lahore: no movement among districts, movement following patterns of geo-located tweets, movement proportional to district population size, and movement following the commonly used gravity and radiation models. Overall, we found that inferences about spatiotemporal variation in DENV transmission were highly sensitive to this range of assumptions about intra-urban human mobility patterns, although the three assumptions that allowed for a modest degree of intra-urban mobility all performed similarly in key respects. Differing inferences about transmission patterns based on our analysis are significant from an epidemiological perspective, as they have different implications for where control efforts should be targeted and whether conditions for transmission became more or less favorable over time
Diseases, Injuries, and Risk Factors in Child and Adolescent Health, 1990 to 2017 Findings From the Global Burden of Diseases, Injuries, and Risk Factors 2017 Study
IMPORTANCE Understanding causes and correlates of health loss among children and
adolescents can identify areas of success, stagnation, and emerging threats and thereby
facilitate effective improvement strategies.
OBJECTIVE To estimate mortality and morbidity in children and adolescents from 1990 to
2017 by age and sex in 195 countries and territories.
DESIGN, SETTING, AND PARTICIPANTS This study examined levels, trends, and spatiotemporal
patterns of cause-specific mortality and nonfatal health outcomes using standardized
approaches to data processing and statistical analysis. It also describes epidemiologic
transitions by evaluating historical associations between disease indicators and the
Socio-Demographic Index (SDI), a composite indicator of income, educational attainment,
and fertility. Data collected from 1990 to 2017 on children and adolescents from birth
through 19 years of age in 195 countries and territories were assessed. Data analysis occurred
from January 2018 to August 2018.
EXPOSURES Being under the age of 20 years between 1990 and 2017.
MAIN OUTCOMES AND MEASURES Death and disability. All-cause and cause-specific deaths,
disability-adjusted life years, years of life lost, and years of life lived with disability.
RESULTS Child and adolescent deaths decreased 51.7% from 13.77 million (95% uncertainty
interval [UI], 13.60-13.93 million) in 1990 to 6.64 million (95% UI, 6.44-6.87 million) in 2017,
but in 2017, aggregate disability increased 4.7% to a total of 145 million (95% UI, 107-190
million) years lived with disability globally. Progress was uneven, and inequity increased, with
low-SDI and low-middle–SDI locations experiencing 82.2% (95% UI, 81.6%-82.9%) of deaths,
up from 70.9% (95% UI, 70.4%-71.4%) in 1990. The leading disaggregated causes of
disability-adjusted life years in 2017 in the low-SDI quintile were neonatal disorders, lower
respiratory infections, diarrhea, malaria, and congenital birth defects, whereas neonatal
disorders, congenital birth defects, headache, dermatitis, and anxiety were highest-ranked in
the high-SDI quintile.
CONCLUSIONS AND RELEVANCE Mortality reductions over this 27-year period mean that
children are more likely than ever to reach their 20th birthdays. The concomitant expansion
of nonfatal health loss and epidemiological transition in children and adolescents, especially
in low-SDI and middle-SDI countries, has the potential to increase already overburdened
health systems, will affect the human capital potential of societies, and may influence the
trajectory of socioeconomic development. Continued monitoring of child and adolescent
health loss is crucial to sustain the progress of the past 27 years
- …
