1,675 research outputs found
Magnetic cycles of the planet-hosting star Tau Bootis: II. a second magnetic polarity reversal
In this paper, we present new spectropolarimetric observations of the
planet-hosting star Tau Bootis, using ESPaDOnS and Narval spectropolarimeters
at Canada-France-Hawaii Telescope (CFHT) and Telescope Bernard Lyot (TBL),
respectively. We detected the magnetic field of the star at three epochs in
2008. It is a weak magnetic field of only a few Gauss, oscillating between a
predominant toroidal component in January and a dominant poloidal component in
June and July. A magnetic polarity reversal was observed relative to the
magnetic topology in June 2007. This is the second such reversal observed in
two years on this star, suggesting that Tau Boo has a magnetic cycle of about 2
years. This is the first detection of a magnetic cycle for a star other than
the Sun. The role of the close-in massive planet in the short activity cycle of
the star is questioned.
Tau Boo has strong differential rotation, a common trend for stars with
shallow convective envelope. At latitude 40 deg., the surface layer of the star
rotates in 3.31 d, equal to the orbital period. Synchronization suggests that
the tidal effects induced by the planet may be strong enough to force at least
the thin convective envelope into corotation. Tau Boo shows variability in the
Ca H & K and Halpha throughout the night and on a night to night time scale. We
do not detect enhancement in the activity of the star that may be related to
the conjunction of the planet. Further data is needed to conclude about the
activity enhancement due to the planet.Comment: 9 pages, 5 figures, 3 tables Accepted to MNRA
Geometry Technology Module (GTM). Volume 1: Engineering description and utilization manual
The geometry technology module (GTM) is described as a system of computerized elements residing in the engineering design integration system library developed for the generation, manipulation, display, computation of mass properties, and data base management of panelled geometry. The GTM is composed of computer programs and associated data for performing configuration analysis on geometric shapes. The program can be operated in batch or demand mode and is designed for interactive use
Can stellar activity make a planet seem misaligned?
Several studies have shown that the occultation of stellar active regions by
the transiting planet can generate anomalies in the high-precision transit
light curves, and these anomalies may lead to an inaccurate estimate of the
planetary parameters (e.g., the planet radius). Since the physics and geometry
behind the transit light curve and the Rossiter- McLaughlin effect
(spectroscopic transit) are the same, the Rossiter-McLaughlin observations are
expected to be affected by the occultation of stellar active regions in a
similar way. In this paper we perform a fundamental test on the spin-orbit
angles as derived by Rossiter-McLaughlin measurements, and we examine the
impact of the occultation of stellar active regions by the transiting planet on
the spin-orbit angle estimations. Our results show that the inaccurate
estimation on the spin-orbit angle due to stellar activity can be quite
significant (up to 30 degrees), particularly for the edge-on, aligned, and
small transiting planets. Therefore, our results suggest that the aligned
transiting planets are the ones that can be easily misinterpreted as misaligned
owing to the stellar activity. In other words, the biases introduced by
ignoring stellar activity are unlikely to be the culprit for the highly
misaligned systems.Comment: 8 pages, 8 figures, accepted for publication in Astronomy &
Astrophysic
Short-lived spots in solar-like stars as observed by CoRoT
Context. CoRoT light curves have an unprecedented photometric quality, having
simultaneously a high signal-to-noise ratio, a long time span and a nearly
continuous duty-cycle. Aims. We analyse the light-curves of four bright targets
observed in the seismology field and study short-lived small spots in
solar-like stars. Methods. We present a simple spot modeling by iterative
analysis. Its ability to extract relevant parameters is ensured by implementing
relaxation steps to avoid convergence to local minima of the sum of the
residuals between observations and modeling. The use of Monte-Carlo simulations
allows us to estimate the performance of the fits. Results. Our starspot
modeling gives a representation of the spots on these stars in agreement with
other well tested methods. Within this framework, parameters such as rigid-body
rotation and spot lifetimes seem to be precisely determined. Then, the
lifetime/rotation period ratios are in the range 0.5 - 2, and there is clear
evidence for differential rotation.Comment: 11 pages Accepted in A&
Evaluation of Pediatric Manual Wheelchair Mobility Using Advanced Biomechanical Methods
There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with spinal cord injury (SCI). Twelve subjects with SCI underwent motion analysis while they propelled their wheelchair at a self-selected speed and propulsion pattern. Upper extremity joint kinematics, forces, and moments were computed using inverse dynamics methods with our custom model. The glenohumeral joint displayed the largest average range of motion (ROM) at 47.1° in the sagittal plane and the largest average superiorly and anteriorly directed joint forces of 6.1% BW and 6.5% BW, respectively. The largest joint moments were 1.4% body weight times height (BW × H) of elbow flexion and 1.2% BW × H of glenohumeral joint extension. Pediatric manual wheelchair users demonstrating these high joint demands may be at risk for pain and upper limb injuries. These evaluation methods may be a useful tool for clinicians and therapists for pediatric wheelchair prescription and training
The enigmatic young brown dwarf binary FU Tau: accretion and activity
FU Tau belongs to a rare class of young, wide brown dwarf binaries. We have
resolved the system in a Chandra X-ray observation and detected only the
primary, FU Tau A. Hard X-ray emission, presumably from a corona, is present
but, unexpectedly, we detect also a strong and unusually soft component from FU
Tau A. Its X-ray properties, so far unique among brown dwarfs, are very similar
to those of the T Tauri star TW Hya. The analogy with TW Hya suggests that the
dominating soft X-ray component can be explained by emission from accretion
shocks. However, the typical free-fall velocities of a brown dwarf are too low
for an interpretation of the observed X-ray temperature as post-shock region.
On the other hand, velocities in excess of the free-fall speed are derived from
archival optical spectroscopy, and independent pieces of evidence for strong
accretion in FU Tau A are found in optical photometry. The high X-ray
luminosity of FU Tau A coincides with a high bolometric luminosity confirming
an unexplained trend among young brown dwarfs. In fact, FU Tau A is
overluminous with respect to evolutionary models while FU Tau B is on the 1 Myr
isochrone suggesting non-contemporaneous formation of the two components in the
binary. The extreme youth of FU Tau A could be responsible for its peculiar
X-ray properties, in terms of atypical magnetic activity or accretion.
Alternatively, rotation and magnetic field effects may reduce the efficiency of
convection which in turn affects the effective temperature and radius of FU Tau
A shifting its position in the HR diagram. Although there is no direct prove of
this latter scenario so far we present arguments for its plausibility.Comment: Accepted for publication in MNRAS; 9 pages, 5 figure
Multi-wavelength observations of Proxima Centauri
We report simultaneous observations of the nearby flare star Proxima Centauri
with VLT/UVES and XMM-Newton over three nights in March 2009. Our optical and
X-ray observations cover the star's quiescent state, as well as its flaring
activity and allow us to probe the stellar atmospheric conditions from the
photosphere into the chromosphere, and then the corona during its different
activity stages. Using the X-ray data, we investigate variations in coronal
densities and abundances and infer loop properties for an intermediate-sized
flare. The optical data are used to investigate the magnetic field and its
possible variability, to construct an emission line list for the chromosphere,
and use certain emission lines to construct physical models of Proxima
Centauri's chromosphere.
We report the discovery of a weak optical forbidden Fe xiii line at 3388 AA
during the more active states of Proxima Centauri. For the intermediate flare,
we find two secondary flare events that may originate in neighbouring loops,
and discuss the line asymmetries observed during this flare in H i, He i, and
Ca ii lines. The high time-resolution in the H alpha line highlights strong
temporal variations in the observed line asymmetries, which re-appear during a
secondary flare event. We also present theoretical modelling with the stellar
atmosphere code PHOENIX to construct flaring chromospheric models.Comment: 19 pages, 22 figures, accepted by A&
Chromospheric Variability in SDSS M Dwarfs. II. Short-Timescale H-alpha Variability
[Abridged] We present the first comprehensive study of short-timescale
chromospheric H-alpha variability in M dwarfs using the individual 15 min
spectroscopic exposures for 52,392 objects from the Sloan Digital Sky Survey.
Our sample contains about 10^3-10^4 objects per spectral type bin in the range
M0-M9, with a total of about 206,000 spectra and a typical number of 3
exposures per object (ranging up to a maximum of 30 exposures). Using this
extensive data set we find that about 16% of the sources exhibit H-alpha
emission in at least one exposure, and of those about 45% exhibit H-alpha
emission in all of the available exposures. Within the sample of objects with
H-alpha emission, only 26% are consistent with non-variable emission,
independent of spectral type. The H-alpha variability, quantified in terms of
the ratio of maximum to minimum H-alpha equivalent width (R_EW), and the ratio
of the standard deviation to the mean (sigma_EW/), exhibits a rapid rise
from M0 to M5, followed by a plateau and a possible decline in M9 objects. In
particular, R_EW increases from a median value of about 1.8 for M0-M3 to about
2.5 for M7-M9, and variability with R_EW>10 is only observed in objects later
than M5. For the combined sample we find that the R_EW values follow an
exponential distribution with N(R_EW) exp[-(R_EW-1)/2]; for M5-M9 objects the
characteristic scale is R_EW-1\approx 2.7, indicative of stronger variability.
In addition, we find that objects with persistent H-alpha emission exhibit
smaller values of R_EW than those with intermittent H-alpha emission. Based on
these results we conclude that H-alpha variability in M dwarfs on timescales of
15 min to 1 hr increases with later spectral type, and that the variability is
larger for intermittent sources.Comment: Submitted to ApJ; 20 pages, 15 figure
- …
