483 research outputs found
Immunoglobulins stimulate cultured Schwann cell maturation and promote their potential to induce axonal outgrowth
Tubulohelical Membrane Arrays, Annulate Lamellae and Nuclear Pores: Tripartite Membrane Architecture with the Participation of Nucleoporins
Tubulohelical membrane arrays: From the initial observation to the elucidation of nanophysical properties and cellular function
Lipids undergo self-assembly to form ordered nonlamellar, nanoperiodic arrays both in vitro and in vivo. While engineering of such membrane arrays for technical devices is envisaged, we know little about their cellular function. Do they represent building blocks of an inherent cellular nanotechnology? Prospects for answering this question could be improved if the nanophysical properties of the membrane arrays could be studied in the context of specific cellular functions. Therefore, we draw attention to exceptional complex membrane arrays found in the renal epithelial cell line PtK2 that could provide perfect conditions for both biophysical and cell functional studies. The so-called tubulohelical membrane arrays (TUHMAs) combine nanoperiodicity of lipid membranes with that of helix-like proteinaceous core structures. Strikingly, they show several characteristics of dynamic, microtubule-associated single organelles. Our initial data indicate that TUHMA formation occurs in the depth of the cytoplasm under participation of cytoplasmic nucleoporins. Once matured, they may fuse with the nuclear membrane in polarized positions, either perpendicularly or in parallel to the nucleus. As a starting point for the initiation of functional studies we found a connection between TUHMAs and primary cilia, indicated by immunolabeling patterns of detyrosynated tubulin and cytoplasmic nucleoporins. We discuss these observations in the context of the ciliary cycle and of the specific requirement of ciliated renal epithelial cells for oriented cell division. Finally, we raise the question of whether putative nanooptical properties of TUHMAs could serve for communicating orientation between dividing cells
Plectin-controlled keratin cytoarchitecture affects MAP kinases involved in cellular stress response and migration
Plectin is a major intermediate filament (IF)–based cytolinker protein that stabilizes cells and tissues mechanically, regulates actin filament dynamics, and serves as a scaffolding platform for signaling molecules. In this study, we show that plectin deficiency is a cause of aberrant keratin cytoskeleton organization caused by a lack of orthogonal IF cross-linking. Keratin networks in plectin-deficient cells were more susceptible to osmotic shock–induced retraction from peripheral areas, and their okadaic acid–induced disruption (paralleled by stress-activated MAP kinase p38 activation) proceeded faster. Basal activities of the MAP kinase Erk1/2 and of the membrane-associated upstream protein kinases c-Src and PKCδ were significantly elevated, and increased migration rates, as assessed by in vitro wound-closure assays and time-lapse microscopy, were observed. Forced expression of RACK1, which is the plectin-binding receptor protein for activated PKCδ, in wild-type keratinocytes elevated their migration potential close to that of plectin-null cells. These data establish a link between cytolinker-controlled cytoarchitecture/scaffolding functions of keratin IFs and specific MAP kinase cascades mediating distinct cellular responses
High-Content Chemical and RNAi Screens for Suppressors of Neurotoxicity in a Huntington's Disease Model
To identify Huntington's Disease therapeutics, we conducted high-content small molecule and RNAi suppressor screens using a Drosophila primary neural culture Huntingtin model. Drosophila primary neurons offer a sensitive readout for neurotoxicty, as their neurites develop dysmorphic features in the presence of mutant polyglutamine-expanded Huntingtin compared to nonpathogenic Huntingtin. By tracking the subcellular distribution of mRFP-tagged pathogenic Huntingtin and assaying neurite branch morphology via live-imaging, we identified suppressors that could reduce Huntingtin aggregation and/or prevent the formation of dystrophic neurites. The custom algorithms we used to quantify neurite morphologies in complex cultures provide a useful tool for future high-content screening approaches focused on neurodegenerative disease models. Compounds previously found to be effective aggregation inhibitors in mammalian systems were also effective in Drosophila primary cultures, suggesting translational capacity between these models. However, we did not observe a direct correlation between the ability of a compound or gene knockdown to suppress aggregate formation and its ability to rescue dysmorphic neurites. Only a subset of aggregation inhibitors could revert dysmorphic cellular profiles. We identified lkb1, an upstream kinase in the mTOR/Insulin pathway, and four novel drugs, Camptothecin, OH-Camptothecin, 18β-Glycyrrhetinic acid, and Carbenoxolone, that were strong suppressors of mutant Huntingtin-induced neurotoxicity. Huntingtin neurotoxicity suppressors identified through our screen also restored viability in an in vivo Drosophila Huntington's Disease model, making them attractive candidates for further therapeutic evaluation.National Institutes of Health (U.S.) (grant R01 EB007042)National Institutes of Health (U.S.
Myofiber integrity depends on desmin network targeting to Z-disks and costameres via distinct plectin isoforms
Dysfunction of plectin, a 500-kD cytolinker protein, leads to skin blistering and muscular dystrophy. Using conditional gene targeting in mice, we show that plectin deficiency results in progressive degenerative alterations in striated muscle, including aggregation and partial loss of intermediate filament (IF) networks, detachment of the contractile apparatus from the sarcolemma, profound changes in myofiber costameric cytoarchitecture, and decreased mitochondrial number and function. Analysis of newly generated plectin isoform–specific knockout mouse models revealed that IF aggregates accumulate in distinct cytoplasmic compartments, depending on which isoform is missing. Our data show that two major plectin isoforms expressed in muscle, plectin 1d and 1f, integrate fibers by specifically targeting and linking desmin IFs to Z-disks and costameres, whereas plectin 1b establishes a linkage to mitochondria. Furthermore, disruption of Z-disk and costamere linkages leads to the pathological condition of epidermolysis bullosa with muscular dystrophy. Our findings establish plectin as the major organizer of desmin IFs in myofibers and provide new insights into plectin- and desmin-related muscular dystrophies
Accessing Nuclear Structure for Field Emission, in Lens, Scanning Electron Microscopy (FEISEM)
Scanning electron microscopy (SEM) has had a shorter time course in biology than conventional transmission electron microscopy (TEM) but has nevertheless produced a wealth of images that have significantly complemented our perception of biological structure and function from TEM information. By its nature, SEM is a surface imaging technology, and its impact at the subcellular level has been restricted by the considerably reduced resolution in conventional SEM in comparison to TEM. This restriction has been removed by the recent advent of high-brightness sources used in lensfield emission instruments (FEISEM) which have produced resolution of around 1 nanometre, which is not usually a limiting figure for biological material.
This communication reviews our findings in the use of FEISEM in the imaging of nuclear surfaces, then associated structures, such as nuclear pore complexes, and the relationships of these structures with cytoplasmic and nucleoplasmic elements. High resolution SEM allows the structurally orientated cell biologist to visualise, directly and in three dimensions, subcellular structure and its modulation with a view to understanding its functional significance. Clearly, intracellular surfaces require separation from surrounding structural elements in vivo to allow surface imaging, and we review a combination of biochemical and mechanical isolation methods for nuclear surfaces
Qualification of Hemophilia Treatment Centers to Enable Multi-Center Studies of Gene Expression Signatures in Blood Cells from Pediatric Patients
Hemophilia A is a rare congenital bleeding disorder caused by a deficiency of functionally active coagulation factor VIII (FVIII). Most patients with the severe form of the disease require FVIII replacement therapies, which are often associated with the development of neutralizing antibodies against FVIII. Why some patients develop neutralizing antibodies while others do not is not fully understood. Previously, we could demonstrate that the analysis of FVIII-induced gene expression signatures in peripheral blood mononuclear cells (PBMC) obtained from patients exposed to FVIII replacement therapies provides novel insights into underlying immune mechanisms regulating the development of different populations of FVIII-specific antibodies. The aim of the study described in this manuscript was the development of training and qualification test procedures to enable local operators in different European and US clinical Hemophilia Treatment Centers (HTC) to produce reliable and valid data for antigen-induced gene expression signatures in PBMC obtained from small blood volumes. For this purpose, we used the model antigen Cytomegalovirus (CMV) phosphoprotein (pp) 65. We trained and qualified 39 local HTC operators from 15 clinical sites in Europe and the US, of whom 31 operators passed the qualification at first attempt, and eight operators passed at the second attempt
Polyethylene glycol 20 kDa-induced vacuolation does not impair phagocytic function of human monocyte-derived macrophages
Conjugation to polyethylene glycol (PEG) is commonly used to enhance drug delivery and efficacy by extending the half-life of the drug molecule. This has important implications for reducing treatment burden in diseases that require chronic prophylaxis, such as hemophilia. Clearance of PEG molecules with high molecular weights (≥ 40 kDa) has been reported to cause cellular vacuolation in mammals. Rurioctocog alfa pegol (PEGylated recombinant coagulation factor VIII) contains a 20-kDa PEG. This study investigated the effects of exposure to 20-kDa PEG (10 μg/ml to 10 mg/ml) on the morphology and function of human monocyte-derived macrophages (MDMs) in vitro. Exposure to PEG for 24 hours was associated with significant vacuolation only at concentrations of 1 mg/ml or more, which far exceed the levels associated with clinically relevant doses of rurioctocog alfa pegol. Immunofluorescence staining of PEG was detected in the cytoplasm of MDMs, indicating uptake into the cells. No impairment of MDM phagocytic activity (ability to ingest fluorescently labeled Escherichia coli) was observed with 24-hour exposure to PEG, even at concentrations associated with significant vacuolation. Furthermore, PEG exposure did not have significant effects on cytokine secretion in resting or lipopolysaccharide-stimulated MDMs, or on the expression of cell surface markers in stimulated MDMs. Cell viability was not affected by 24-hour exposure to PEG. In conclusion, vacuolation of human MDMs after exposure to 20-kDa PEG only occurred with PEG concentrations far in excess of those equivalent to clinically relevant doses of rurioctocog alfa pegol and did not affect MDM viability or functionality. Together, these results support the concept that PEG-mediated vacuolation is an adaptive cellular response rather than a toxic effect
- …
