31,625 research outputs found

    A NOTE ON COMONOTONICITY AND POSITIVITY OF THE CONTROL COMPONENTS OF DECOUPLED QUADRATIC FBSDE

    Get PDF
    In this small note we are concerned with the solution of Forward-Backward Stochastic Differential Equations (FBSDE) with drivers that grow quadratically in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem is a comparison result that allows comparing componentwise the signs of the control processes of two different qgFBSDE. As a byproduct one obtains conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio

    Droplet mixer based on siphon-induced flow discretization and phase shifting

    Get PDF
    We present a novel mixing principle for centrifugal microfluidic platforms. Siphon structures are designed to disrupt continuous flows in a controlled manner into a sequence of discrete droplets, displaying individual volumes as low as 60 nL. When discrete volumes of different liquids are alternately issued into a common reservoir, a striation pattern of alternating liquid layers is obtained. In this manner diffusion distances are drastically decreased and a fast and homogeneous mixing is achieved. Efficient mixing is demonstrated for a range of liquid combinations of varying fluid properties such as aqueous inks or saline solutions and human plasma. Volumes of 5 muL have been mixed in less than 20 s to a high mixing quality. One-step dilutions of plasma in a standard phosphate buffer solution up to 1:5 are also demonstrated

    Analysis of a test method for measuring resonant frequencies of loaded hydraulic feed lines

    Get PDF
    Analysis of test facility for measuring resonant frequencies of fluid feed line

    Phase transitions and crossovers in reaction-diffusion models with catalyst deactivation

    Full text link
    The activity of catalytic materials is reduced during operation by several mechanisms, one of them being poisoning of catalytic sites by chemisorbed impurities or products. Here we study the effects of poisoning in two reaction-diffusion models in one-dimensional lattices with randomly distributed catalytic sites. Unimolecular and bimolecular single-species reactions are considered, without reactant input during the operation. The models show transitions between a phase with continuous decay of reactant concentration and a phase with asymptotic non-zero reactant concentration and complete poisoning of the catalyst. The transition boundary depends on the initial reactant and catalyst concentrations and on the poisoning probability. The critical system behaves as in the two-species annihilation reaction, with reactant concentration decaying as t^{-1/4} and the catalytic sites playing the role of the second species. In the unimolecular reaction, a significant crossover to the asymptotic scaling is observed even when one of those parameters is 10% far from criticality. Consequently, an effective power-law decay of concentration may persist up to long times and lead to an apparent change in the reaction kinetics. In the bimolecular single-species reaction, the critical scaling is followed by a two-dimensional rapid decay, thus two crossovers are found.Comment: 8 pages, 7 figure

    Mancha-púrpura do alho e da cebola: doença difícil de controlar.

    Get PDF
    bitstream/CNPH-2010/36360/1/cot-71.pd
    corecore