551 research outputs found
Wettability influences cell behavior on superhydrophobic surfaces with different topographies
Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavior on superhydrophobic surfaces is influenced by surface topography and polymer type. Biomimetic superhydrophobic rough surfaces of polystyrene and poly(l-lactic acid) with different micro/nanotopographies were obtained from smooth surfaces using a simple phase-separation based method. Total protein was quantified and showed a less adsorption of bovine serum albumin onto rough surfaces as compared to smooth surfaces of the same material. The mouse osteoblastic MC3T3-E1 cell line and primary bovine articular chondrocytes were used to study cell attachment and proliferation. Cells attached and proliferate better in the smooth surfaces. The superhydrophobic surfaces allowed cells to adhere but inhibited their proliferation. This study indicates that surface wettability, rather than polymer type or the topography of the superhydrophobic surfaces, is a critical factor in determining cell behavior
Development of a novel cell encapsulation system based on natural origin polymers for tissue engineering applications
Cells microencapsulated in biocompatible semi-permeable polymeric
membranes are effective as cell delivery systems while protecting the host
against immune responses. In this study, cell encapsulation membranes were
prepared based on carrageenan and alginate, two natural cationic polymers.
Different formulations/conditions were explored to optimize the microcapsules
which were characterized with respect to their morphology, mechanical stability,
and cytotoxicity. Spherical-shaped microcapsules were obtained from all the
polymeric systems. The iota-carrageenan/sodium alginate microcapsules exhibited
the best stability and permeability, and therefore, these were selected for
the cell encapsulation. These capsules provided an environment that supported
cell proliferation and have the potential for tissue engineering as well as other
cell-based therapy applications.One of the authors (SML) acknowledges the support of the Programme Alssan-the European Union Programme of High Level Scholarships for Latin America (scholarship no. E04M041362CO). This work was partially supported by the European STREP HIPPOCRATES (NMP3-CT-2003-505758) and by the Fundacao para a Ciencia e Tecnologia (project PTDC/QUI/68804/2006) and carried out under the scope of European NoE EXPERTISSUES (NMP3-CT-2004-500283)
Pervasive and intelligent decision support in Intensive Medicine – the complete picture
Series : Lecture notes in computer science (LNCS), vol. 8649In the Intensive Care Units (ICU) it is notorious the high number of
data sources available. This situation brings more complexity to the way of how
a professional makes a decision based on information provided by those data
sources. Normally, the decisions are based on empirical knowledge and
common sense. Often, they don’t make use of the information provided by the
ICU data sources, due to the difficulty in understanding them. To overcome
these constraints an integrated and pervasive system called INTCare has been
deployed. This paper is focused in presenting the system architecture and the
knowledge obtained by each one of the decision modules: Patient Vital Signs,
Critical Events, ICU Medical Scores and Ensemble Data Mining. This system is
able to make hourly predictions in terms of organ failure and outcome. High
values of sensitivity where reached, e.g. 97.95% for the cardiovascular system,
99.77% for the outcome. In addition, the system is prepared for tracking
patients’ critical events and for evaluating medical scores automatically and in
real-time.(undefined
Effects of starch/polycaprolactone-based blends for spinal cord injury regeneration in neurons/glial cells viability and proliferation
Spinal cord injury (SCI) leads to drastic alterations on the quality of life of afflicted individuals. With the advent of Tissue Engineering and Regenerative Medicine where approaches combining biomaterials, cells and growth factors are used, one can envisage novel strategies that can adequately tackle this problem. The objective of this study was to evaluate a blend of starch with poly(ε-caprolactone) (SPCL) aimed to be used for the development of scaffolds spinal cord injury (SCI) repair. SPCL linear parallel filaments were deposited on polystyrene coverslips and assays were carried out using primary cultures of hippocampal neurons and glial cells. Light and fluorescence microscopy observations revealed that both cell populations were not negatively affected by the SPCL-based biomaterial. MTS and total protein quantification indicated that both cell viability and proliferation rates were similar to controls. Both neurons and astrocytes occasionally contacted the surface of SPCL filaments through their dendrites and cytoplasmatic processes, respectively, while microglial cells were unable to do so. Using single cell [Ca2+ ]i imaging, hippocampal neurons were observed growing within the patterned channels and were functional as assessed by the response to a 30 mM KCl stimulus. The present data demonstrated that SPCL-based blends are potentially suitable for the development of scaffolds in SCI regenerative medicine.Portuguese Foundation for Science and Technology through funds from POCTI and/or FEDER programs (Funding to ICVS, 3B's Research Group and post doctoral fellowship to A.J. Salgado-SFRH/BPD/17595/2004)
Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds : effect of static and dynamic coating conditions
Apatite layers were grown on the surface of newly developed starch/polycaprolactone (SPCL)-based scaffolds by a 3D plotting technology.
To produce the biomimetic coatings, a sodium silicate gel was used as nucleating agent, followed by immersion in a simulated
body fluid (SBF) solution. After growing a stable apatite layer for 7 days, the scaffolds were placed in SBF under static, agitated (80 strokes
min!1) and circulating flow perfusion (Q = 4 ml min!1; tR = 15 s) for up to 14 days. The materials were characterized by scanning
electron microscopy/energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and thin-film X-ray diffraction.
Cross-sections were obtained and the coating thickness was measured. The elemental composition of solution and coatings was monitored
by inductively coupled plasma spectroscopy. After only 6 h of immersion in SBF it was possible to observe the formation of small
nuclei of an amorphous calcium phosphate (ACP) layer. After subsequent SBF immersion from 7 to 14 days under static, agitated and
circulating flow perfusion conditions, these layers grew into bone-like nanocrystalline carbonated apatites covering each scaffold fiber
without compromising its initial morphology. No differences in the apatite composition/chemical structure were detectable between
the coating conditions. In case of flow perfusion, the coating thickness was significantly higher. This condition, besides mimicking better
the biological milieu, allowed for the coating of complex architectures at higher rates, which can greatly reduce the coating step.The authors acknowledge the Portuguese Foundation for Science and Technology (PhD grant to A.L.O., SFRH/BD/10956/2002 and post-doctoral Grant to R.A.S., SFRH/BPD/17151/2004, under the POCTI Program). This work was partially supported by FCT through POCTI and/or FEDER programmes and also partially supported by the EU Project HIPPOCRATES (NMP3-CT-2003-505758) and EXPERTISSUES (NMP-CT-2004-500283)
Epidermis recreation in spongy-like hydrogels: New opportunities to explore epidermis-like analogues
[Excerpt] On the road to successfully achieving skin regeneration, 3D matrices/scaffolds that provide the adequate physico-chemical and biological cues to recreate the ideal healing environment are believed to be a key element [1], [2] and [3].
Numerous polymeric matrices derived from both natural [4] and [5] and synthetic [6], [7] and [8] sources have been used as cellular supports; nowadays, fewer matrices are simple carriers, and more and more are ECM analogues that can actively participate in the healing process. Therefore, the attractive characteristics of hydrogels, such as high water content, tunable elasticity and facilitated mass transportation, have made them excellent materials to mimic cells’ native environment [9]. Moreover, their hygroscopic nature [10] and possibility of attaining soft tissues-like mechanical properties mean they have potential for exploitation as wound healing promoters [11], [12], [13] and [14]. Nonetheless, hydrogels lack natural cell adhesion sites [15], which limits the maximization of their potential in the recreation of the cell niche. This issue has been tackled through the use of a range of sophisticated approaches to decorate the hydrogels with adhesion sequences such as arginine-glycine-aspartic acid (RGD) derived from fibronectin [16], [17] and [18], and tyrosine-isoleucine-glycine-serine-arginine (YIGSR) derived from laminin [18] and [19], which not only aim to modulate cell adhesion, but also influencing cell fate and survival [18]. Nonetheless, its widespread use is still limited by significant costs associated with the use of recombinant bioactive molecules
A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agents
In many biomedical applications, the performance
of biomaterials depends largely on their degradation
behavior. For instance, in drug delivery applications, the
polymeric carrier should degrade under physiological
conditions slowly releasing the encapsulated drug. The aim
of this work was, therefore, to develop an enzymaticmediated
degradation carrier system for the delivery of
differentiation agents to be used in bone tissue engineering
applications. For that, a polymeric blend of starch with
polycaprolactone (SPCL) was used to produce a microparticle
carrier for the controlled release of dexamethasone
(DEX). In order to investigate the effect of enzymes on the
degradation behavior of the developed system and release
profile of the encapsulated osteogenic agent (DEX), the
microparticles were incubated in phosphate buffer solution
in the presence of a-amylase and/or lipase enzymes (at
physiological concentrations), at 37 C for different periods
of time. The degradation was followed by gravimetric
measurements, scanning electron microscopy (SEM) and
Fourier transformed infrared (FTIR) spectroscopy and the
release of DEX was monitored by high performance liquid
chromatography (HPLC). The developed microparticles
were shown to be susceptible to enzymatic degradation, as observed by an increase in weight loss and porosity with
degradation time when compared with control samples
(incubation in buffer only). For longer degradation times,
the diameter of the microparticles decreased significantly
and a highly porous matrix was obtained. The in vitro
release studies showed a sustained release pattern with
48% of the encapsulated drug being released for a period of
30 days. As the degradation proceeds, it is expected that
the remaining encapsulated drug will be completely
released as a consequence of an increasingly permeable
matrix and faster diffusion of the drug. Cytocompatibility
results indicated the possibility of the developed microparticles
to be used as biomaterial due to their reduced
cytotoxic effects
Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation
Naturally derived polymers have been extensively used in scaffold production for cartilage tissue engineering.
The present work aims to evaluate and characterize extracellular matrix (ECM) formation in
two types of chitosan-based scaffolds, using bovine articular chondrocytes (BACs). The influence of these
scaffolds’ porosity, as well as pore size and geometry, on the formation of cartilagineous tissue was studied.
The effect of stirred conditions on ECM formation was also assessed. Chitosan-poly(butylene succinate)
(CPBS) scaffolds were produced by compression moulding and salt leaching, using a blend of 50%
of each material. Different porosities and pore size structures were obtained. BACs were seeded onto CPBS
scaffolds using spinner flasks. Constructs were then transferred to the incubator, where half were cultured
under stirred conditions, and the other half under static conditions for 4 weeks. Constructs were
characterized by scanning electron microscopy, histology procedures, immunolocalization of collagen
type I and collagen type II, and dimethylmethylene blue assay for glycosaminoglycan (GAG) quantification.
Both materials showed good affinity for cell attachment. Cells colonized the entire scaffolds and
were able to produce ECM. Large pores with random geometry improved proteoglycans and collagen type
II production. However, that structure has the opposite effect on GAG production. Stirred culture conditions
indicate enhancement of GAG production in both types of scaffold.M.L. Alves da Silva would like to acknowledge the Portuguese Foundation for Science and Technology (FCT) for her grant (SFRH/BD/28708/2006), Marie Curie Actions-ALEA JACTA EST (MEST-CT-2004-008104), European NoE EXPERTISSUES (NMP3-CT-2004-500283), IP GENOSTEM (LSHB-CT-2003-503161) and CARTISCAFF (POCTI/SAUIBMA/58982
Preparation and characterization of starch-poly-epsilon-caprolactone microparticles incorporating bioactive agents for drug delivery and tissue engineering applications
One limitation associated with the delivery of bioactive agents concerns the short half-life of these molecules when administered intravenously,
which results in their loss from the desired site. Incorporation of bioactive agents into depot vehicles provides a means to
increase their persistence at the disease site. Major issues are involved in the development of a proper carrier system able to deliver
the correct drug, at the desired dose, place and time. In this work, starch-poly-e-caprolactone (SPCL) microparticles were developed
for use in drug delivery and tissue engineering (TE) applications. SPCL microparticles were prepared by using an emulsion solvent
extraction/evaporation technique, which was demonstrated to be a successful procedure to obtain particles with a spherical shape (particle
size between 5 and 900 lm) and exhibiting different surface morphologies. Their chemical structure was confirmed by Fourier transform
infrared spectroscopy. To evaluate the potential of the developed microparticles as a drug delivery system, dexamethasone (DEX)
was used as model drug. DEX, a well-known component of osteogenic differentiation media, was entrapped into SPCL microparticles at
different percentages up to 93%. The encapsulation efficiency was found to be dependent on the polymer concentration and drug-to-polymer
ratio. The initial DEX release seems to be governed mainly by diffusion, and it is expected that the remaining DEX will be released
when the polymeric matrix starts to degrade. In this work it was demonstrated that SPCL microparticles containing DEX can be successfully
prepared and that these microparticular systems seem to be quite promising for controlled release applications, namely as carriers
of important differentiation agents in TE.E.R.B. thanks the Marie Curie Host Fellowships for Early Stage Research Training (EST) "Alea Jacta EST" (MEST-CT-2004-008104) for providing her with a PhD Fellowship. This work was partially supported by the European NoE EXPERTISSUES (NMP3-CT-2004-500283)
- …
