5,718 research outputs found

    The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster

    Get PDF
    It has long been known that many flying insects use visual cues to orient with respect to the wind and to control their groundspeed in the face of varying wind conditions. Much less explored has been the role of mechanosensory cues in orienting insects relative to the ambient air. Here we show that Drosophila melanogaster, magnetically tethered so as to be able to rotate about their yaw axis, are able to detect and orient into a wind, as would be experienced during forward flight. Further, this behavior is velocity dependent and is likely subserved, at least in part, by the Johnston's organs, chordotonal organs in the antennae also involved in near-field sound detection. These wind-mediated responses may help to explain how flies are able to fly forward despite visual responses that might otherwise inhibit this behavior. Expanding visual stimuli, such as are encountered during forward flight, are the most potent aversive visual cues known for D. melanogaster flying in a tethered paradigm. Accordingly, tethered flies strongly orient towards a focus of contraction, a problematic situation for any animal attempting to fly forward. We show in this study that wind stimuli, transduced via mechanosensory means, can compensate for the aversion to visual expansion and thus may help to explain how these animals are indeed able to maintain forward flight

    Imaging of Hepatocellular Carcinoma by Computed Tomography and Magnetic Resonance Imaging: State of the Art

    Get PDF
    Hepatocellular carcinoma (HCC) is a very frequent tumor worldwide. Its incidence is linked to the distribution of liver cirrhosis and viral hepatitis, which are the main risk factors for the development of HCC. For the evaluation of the cirrhotic liver and for the diagnosis of HCC, multidetector computed tomography (MDCT) proved to be a robust and reliable tool. In MDCT the diagnosis of HCC can be made based on neovascularization with increased arterial and decreased portal venous supply. With modern magnetic resonance imaging (MRI), spatial resolution and robustness increased dramatically. Beside the evaluation of neovascularization by means of gadolinium-enhanced early dynamic MRI, the main advantages of MRI are additional information on tissue composition and liver-specific function. With diffusion-weighted imaging or plain T(1)- and T(2)-weighted sequences, different tissue elements like fat, hemorrhage, glycogen, edema and cellular density can be evaluated. Liver-specific contrast agents give insight into the Kupffer cell density or the hepatocellular function. The integration of all these parts into the MR examination allows for a very high detection rate for overt HCC nowadays, although very small HCCs are still a challenge. Moreover, insight into the different stages of hepatocarcinogenesis can be possible with MRI. Despite its limited availability in some countries, it has to be rendered to be the modality of choice for the distinct evaluation of the cirrhotic liver. Copyright (C) 2009 S. Karger AG, Base

    Chaotic Orbits in Thermal-Equilibrium Beams: Existence and Dynamical Implications

    Full text link
    Phase mixing of chaotic orbits exponentially distributes these orbits through their accessible phase space. This phenomenon, commonly called ``chaotic mixing'', stands in marked contrast to phase mixing of regular orbits which proceeds as a power law in time. It is operationally irreversible; hence, its associated e-folding time scale sets a condition on any process envisioned for emittance compensation. A key question is whether beams can support chaotic orbits, and if so, under what conditions? We numerically investigate the parameter space of three-dimensional thermal-equilibrium beams with space charge, confined by linear external focusing forces, to determine whether the associated potentials support chaotic orbits. We find that a large subset of the parameter space does support chaos and, in turn, chaotic mixing. Details and implications are enumerated.Comment: 39 pages, including 14 figure

    AstroGrid-D: Enhancing Astronomic Science with Grid Technology

    Get PDF
    We present AstroGrid-D, a project bringing together astronomers and experts in Grid technology to enhance astronomic science in many aspects. First, by sharing currently dispersed resources, scientists can calculate their models in more detail. Second, by developing new mechanisms to efficiently access and process existing datasets, scientific problems can be investigated that were until now impossible to solve. Third, by adopting Grid technology large instruments such as robotic telescopes and complex scientific workflows from data aquisition to analysis can be managed in an integrated manner. In this paper, we present prominent astronomic use cases, discuss requirements on a Grid middleware and present our approach to extend/augment existing middleware to facilitate the improvements mentioned above

    Ultrabroad-bandwidth multifrequency Raman generation

    Get PDF
    We report on the modeling of transient stimulated rotational Raman scattering in H2 gas. We predict a multifrequency output, spanning a bandwidth greater than the pump frequency, that may be generated without any significant delay with respect to the pump pulses. The roles of dispersion and transiency are quantified

    FOREVER: Fault/intrusiOn REmoVal through Evolution & Recovery

    Get PDF
    The goal of the FOREVER project is to develop a service for Fault/intrusiOn REmoVal through Evolution & Recovery. In order to achieve this goal, our work addresses three main tasks: the definition of the FOREVER service architecture; the analysis of how diversity techniques can improve resilience; and the evaluation of the FOREVER service. The FOREVER service is an important contribution to intrustion-tolerant replication middleware and significantly enhances the resilience

    Production of Enhanced Beam Halos via Collective Modes and Colored Noise

    Full text link
    We investigate how collective modes and colored noise conspire to produce a beam halo with much larger amplitude than could be generated by either phenomenon separately. The collective modes are lowest-order radial eigenmodes calculated self-consistently for a configuration corresponding to a direct-current, cylindrically symmetric, warm-fluid Kapchinskij-Vladimirskij equilibrium. The colored noise arises from unavoidable machine errors and influences the internal space-charge force. Its presence quickly launches statistically rare particles to ever-growing amplitudes by continually kicking them back into phase with the collective-mode oscillations. The halo amplitude is essentially the same for purely radial orbits as for orbits that are initially purely azimuthal; orbital angular momentum has no statistically significant impact. Factors that do have an impact include the amplitudes of the collective modes and the strength and autocorrelation time of the colored noise. The underlying dynamics ensues because the noise breaks the Kolmogorov-Arnol'd-Moser tori that otherwise would confine the beam. These tori are fragile; even very weak noise will eventually break them, though the time scale for their disintegration depends on the noise strength. Both collective modes and noise are therefore centrally important to the dynamics of halo formation in real beams.Comment: For full resolution pictures please go to http://www.nicadd.niu.edu/research/beams

    Real-time Loss Estimation for Instrumented Buildings

    Get PDF
    Motivation. A growing number of buildings have been instrumented to measure and record earthquake motions and to transmit these records to seismic-network data centers to be archived and disseminated for research purposes. At the same time, sensors are growing smaller, less expensive to install, and capable of sensing and transmitting other environmental parameters in addition to acceleration. Finally, recently developed performance-based earthquake engineering methodologies employ structural-response information to estimate probabilistic repair costs, repair durations, and other metrics of seismic performance. The opportunity presents itself therefore to combine these developments into the capability to estimate automatically in near-real-time the probabilistic seismic performance of an instrumented building, shortly after the cessation of strong motion. We refer to this opportunity as (near-) real-time loss estimation (RTLE). Methodology. This report presents a methodology for RTLE for instrumented buildings. Seismic performance is to be measured in terms of probabilistic repair cost, precise location of likely physical damage, operability, and life-safety. The methodology uses the instrument recordings and a Bayesian state-estimation algorithm called a particle filter to estimate the probabilistic structural response of the system, in terms of member forces and deformations. The structural response estimate is then used as input to component fragility functions to estimate the probabilistic damage state of structural and nonstructural components. The probabilistic damage state can be used to direct structural engineers to likely locations of physical damage, even if they are concealed behind architectural finishes. The damage state is used with construction cost-estimation principles to estimate probabilistic repair cost. It is also used as input to a quantified, fuzzy-set version of the FEMA-356 performance-level descriptions to estimate probabilistic safety and operability levels. CUREE demonstration building. The procedure for estimating damage locations, repair costs, and post-earthquake safety and operability is illustrated in parallel demonstrations by CUREE and Kajima research teams. The CUREE demonstration is performed using a real 1960s-era, 7-story, nonductile reinforced-concrete moment-frame building located in Van Nuys, California. The building is instrumented with 16 channels at five levels: ground level, floors 2, 3, 6, and the roof. We used the records obtained after the 1994 Northridge earthquake to hindcast performance in that earthquake. The building is analyzed in its condition prior to the 1994 Northridge Earthquake. It is found that, while hindcasting of the overall system performance level was excellent, prediction of detailed damage locations was poor, implying that either actual conditions differed substantially from those shown on the structural drawings, or inappropriate fragility functions were employed, or both. We also found that Bayesian updating of the structural model using observed structural response above the base of the building adds little information to the performance prediction. The reason is probably that Real-Time Loss Estimation for Instrumented Buildings ii structural uncertainties have only secondary effect on performance uncertainty, compared with the uncertainty in assembly damageability as quantified by their fragility functions. The implication is that real-time loss estimation is not sensitive to structural uncertainties (saving costly multiple simulations of structural response), and that real-time loss estimation does not benefit significantly from installing measuring instruments other than those at the base of the building. Kajima demonstration building. The Kajima demonstration is performed using a real 1960s-era office building in Kobe, Japan. The building, a 7-story reinforced-concrete shearwall building, was not instrumented in the 1995 Kobe earthquake, so instrument recordings are simulated. The building is analyzed in its condition prior to the earthquake. It is found that, while hindcasting of the overall repair cost was excellent, prediction of detailed damage locations was poor, again implying either that as-built conditions differ substantially from those shown on structural drawings, or that inappropriate fragility functions were used, or both. We find that the parameters of the detailed particle filter needed significant tuning, which would be impractical in actual application. Work is needed to prescribe values of these parameters in general. Opportunities for implementation and further research. Because much of the cost of applying this RTLE algorithm results from the cost of instrumentation and the effort of setting up a structural model, the readiest application would be to instrumented buildings whose structural models are already available, and to apply the methodology to important facilities. It would be useful to study under what conditions RTLE would be economically justified. Two other interesting possibilities for further study are (1) to update performance using readily observable damage; and (2) to quantify the value of information for expensive inspections, e.g., if one inspects a connection with a modeled 50% failure probability and finds that the connect is undamaged, is it necessary to examine one with 10% failure probability
    corecore