2,169 research outputs found
Cloud cavitation on an oscillating hydrofoil
Cloud cavitation, often formed by the breakdown of a sheet or vortex cavity, is believed to be responsible for much of the noise and erosion damage that occurs under cavitating conditions. For this paper, cloud cavitation was produced through the periodic forcing of the flow by an oscillating hydrofoil. The present work examines the acoustic signal generated by the collapse of cloud cavitation, and compares the results to those obtained by studies of single travelling bubble cavitation. In addition, preliminary studies involving the use of air injection on the suction surface of the hydrofoil explore its mitigating effects on the cavitation noise
Materials Deemed Harmful to Minors Are Welcomed into Classrooms and Libraries via Educational Obscenity Exemptions
Enantioselective Total Synthesis of (—)-Acetylaranotin, a Dihydrooxepine Epidithiodiketopiperazine
The first total synthesis of the dihydrooxepine-containing epidithiodiketopiperazine (ETP) (−)-acetylaranotin (1) is reported. The key steps of the synthesis include an enantioselective azomethine ylide (1,3)-dipolar cycloaddition reaction to set the absolute and relative stereochemistry, a rhodium-catalyzed cycloisomerization/chloride elimination sequence to generate the dihydrooxepine moiety, and a stereoretentive diketopiperazine sulfenylation to install the epidisulfide. This synthesis provides access to (−)-1 in 18 steps from inexpensive, commercially available starting materials. We anticipate that the approach described herein will serve as a general strategy for the synthesis of additional members of the dihydrooxepine ETP family
Identifying candidates for targeted gait rehabilitation: better prediction through biomechanics-informed characterization
BACKGROUND:
Walking speed has been used to predict the efficacy of gait training; however, poststroke motor impairments are heterogeneous and different biomechanical strategies may underlie the same walking speed. Identifying which individuals will respond best to a particular gait rehabilitation program using walking speed alone may thus be limited. The objective of this study was to determine if, beyond walking speed, participants' baseline ability to generate propulsive force from their paretic limbs (paretic propulsion) influences the improvements in walking speed resulting from a paretic propulsion-targeting gait intervention.
METHODS:
Twenty seven participants >6 months poststroke underwent a 12-week locomotor training program designed to target deficits in paretic propulsion through the combination of fast walking with functional electrical stimulation to the paretic ankle musculature (FastFES). The relationship between participants' baseline usual walking speed (UWSbaseline), maximum walking speed (MWSbaseline), and paretic propulsion (propbaseline) versus improvements in usual walking speed (∆UWS) and maximum walking speed (∆MWS) were evaluated in moderated regression models.
RESULTS:
UWSbaseline and MWSbaseline were, respectively, poor predictors of ΔUWS (R 2 = 0.24) and ΔMWS (R 2 = 0.01). Paretic propulsion × walking speed interactions (UWSbaseline × propbaseline and MWSbaseline × propbaseline) were observed in each regression model (R 2 s = 0.61 and 0.49 for ∆UWS and ∆MWS, respectively), revealing that slower individuals with higher utilization of the paretic limb for forward propulsion responded best to FastFES training and were the most likely to achieve clinically important differences.
CONCLUSIONS:
Characterizing participants based on both their walking speed and ability to generate paretic propulsion is a markedly better approach to predicting walking recovery following targeted gait rehabilitation than using walking speed alone
Catalytic asymmetric synthesis of highly substituted pyrrolizidines
A catalytic asymmetric double (1,3)-dipolar cycloaddition reaction has been developed. Using a chiral silver catalyst, enantioenriched pyrrolizidines can be prepared in one flask from inexpensive, commercially available starting materials. The pyrrolizidine products contain a variety of substitution patterns and as many as six stereogenic centers
Soft systems methodology: a context within a 50-year retrospective of OR/MS
Soft systems methodology (SSM) has been used in the practice of operations research and management science OR/MS) since the early 1970s. In the 1990s, it emerged as a viable academic discipline. Unfortunately, its proponents consider SSM and traditional systems thinking to be mutually exclusive. Despite the differences claimed by SSM proponents between the two, they have been complementary. An extensive sampling of the OR/MS literature over its entire lifetime demonstrates the richness with which the non-SSM literature has been addressing the very same issues as does SSM
Observation of Amounts of Movement Practice Provided during Stroke Rehabilitation
Objective
To investigate how much movement practice occurred during stroke rehabilitation, and what factors might influence doses of practice provided.
Design
Observational survey of stroke therapy sessions.
Setting
Seven inpatient and outpatient rehabilitation sites.
Participants
We observed a convenience sample of 312 physical and occupational therapy sessions for people with stroke.
Interventions
Not applicable.
Main Outcome Measures
We recorded numbers of repetitions in specific movement categories and data on potential modifying factors (patient age, side affected, time since stroke, FIM item scores, years of therapist experience). Descriptive statistics were used to characterize amounts of practice. Correlation and regression analyses were used to determine whether potential factors were related to the amount of practice in the 2 important categories of upper extremity functional movements and gait steps.
Results
Practice of task-specific, functional upper extremity movements occurred in 51% of the sessions that addressed upper limb rehabilitation, and the average number of repetitions/session was 32 (95% confidence interval [CI]=20–44). Practice of gait occurred in 84% of sessions that addressed lower limb rehabilitation and the average number of gait steps/session was 357 (95% CI=296–418). None of the potential factors listed accounted for significant variance in the amount of practice in either of these 2 categories.
Conclusions
The amount of practice provided during poststroke rehabilitation is small compared with animal models. It is possible that current doses of task-specific practice during rehabilitation are not adequate to drive the neural reorganization needed to promote function poststroke optimally
Cooperative action in eukaryotic gene regulation: physical properties of a viral example
The Epstein-Barr virus (EBV) infects more than 90% of the human population,
and is the cause of several both serious and mild diseases. It is a
tumorivirus, and has been widely studied as a model system for gene
(de)regulation in human. A central feature of the EBV life cycle is its ability
to persist in human B cells in states denoted latency I, II and III. In latency
III the host cell is driven to cell proliferation and hence expansion of the
viral population, but does not enter the lytic pathway, and no new virions are
produced, while the latency I state is almost completely dormant. In this paper
we study a physico-chemical model of the switch between latency I and latency
III in EBV. We show that the unusually large number of binding sites of two
competing transcription factors, one viral and one from the host, serves to
make the switch sharper (higher Hill coefficient), either by cooperative
binding between molecules of the same species when they bind, or by competition
between the two species if there is sufficient steric hindrance.Comment: 7 pages, 6 figures, 1 tabl
Sensory Electrical Stimulation Improves Foot Placement during Targeted Stepping Post-Stroke
Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement
- …
