78 research outputs found
Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation
The local hemodynamic shear stress waveforms present in an artery dictate the endothelial cell phenotype. The observed decrease of the apical glycocalyx layer on the endothelium in atheroprone regions of the circulation suggests that the glycocalyx may have a central role in determining atherosclerotic plaque formation. However, the kinetics for the cells’ ability to adapt its glycocalyx to the environment have not been quantitatively resolved. Here we report that the heparan sulfate component of the glycocalyx of HUVECs increases by 1.4-fold following the onset of high shear stress, compared to static cultured cells, with a time constant of 19 h. Cell morphology experiments show that 12 h are required for the cells to elongate, but only after 36 h have the cells reached maximal alignment to the flow vector. Our findings demonstrate that following enzymatic degradation, heparan sulfate is restored to the cell surface within 12 h under flow whereas the time required is 20 h under static conditions. We also propose a model describing the contribution of endocytosis and exocytosis to apical heparan sulfate expression. The change in HS regrowth kinetics from static to high-shear EC phenotype implies a differential in the rate of endocytic and exocytic membrane turnover.National Heart, Lung, and Blood Institute (Grant HL090856-01)Singapore-MIT Allianc
Measurement of Warfarin in the Oral Fluid of Patients Undergoing Anticoagulant Oral Therapy
BACKGROUND: Patients on warfarin therapy undergo invasive and expensive checks for the coagulability of their blood. No information on coagulation levels is currently available between two controls. METHODOLOGY: A method was developed to determine warfarin in oral fluid by HPLC and fluorimetric detection. The chromatographic separation was performed at room temperature on a C-18 reversed-phase column, 65% PBS and 35% methanol mobile phase, flow rate 0.7 mL/min, injection volume 25 µL, excitation wavelength 310 nm, emission wavelength 400 nm. FINDINGS: The method was free from interference and matrix effect, linear in the range 0.2-100 ng/mL, with a detection limit of 0.2 ng/mL. Its coefficient of variation was <3% for intra-day measurements and <5% for inter-day measurements. The average concentration of warfarin in the oral fluid of 50 patients was 2.5±1.6 ng/mL (range 0.8-7.6 ng/mL). Dosage was not correlated to INR (r = -0.03, p = 0.85) but positively correlated to warfarin concentration in the oral fluid (r = 0.39, p = 0.006). The correlation between warfarin concentration and pH in the oral fluid (r = 0.37, p = 0.009) confirmed the importance of pH in regulating the drug transfer from blood. A correlation between warfarin concentration in the oral fluid and INR was only found in samples with pH values ≥7.2 (r = 0.84, p = 0.004). CONCLUSIONS: Warfarin diffuses from blood to oral fluid. The method allows to measure its concentration in this matrix and to analyze correlations with INR and other parameters
High Quality Care and Ethical Pay-for-Performance: A Society of General Internal Medicine Policy Analysis
BACKGROUND: Pay-for-performance is proliferating, yet its impact on key stakeholders remains uncertain. OBJECTIVE: The Society of General Internal Medicine systematically evaluated ethical issues raised by performance-based physician compensation. RESULTS: We conclude that current arrangements are based on fundamentally acceptable ethical principles, but are guided by an incomplete understanding of health-care quality. Furthermore, their implementation without evidence of safety and efficacy is ethically precarious because of potential risks to stakeholders, especially vulnerable patients. CONCLUSION: We propose four major strategies to transition from risky pay-for-performance systems to ethical performance-based physician compensation and high quality care. These include implementing safeguards within current pay-for-performance systems, reaching consensus regarding the obligations of key stakeholders in improving health-care quality, developing valid and comprehensive measures of health-care quality, and utilizing a cautious evaluative approach in creating the next generation of compensation systems that reward genuine quality
Dutch home-based pre-reading intervention with children at familial risk of dyslexia
Children (5 and 6 years old, n = 30) at familial risk of dyslexia received a home-based intervention that focused on phoneme awareness and letter knowledge in the year prior to formal reading instruction. The children were compared to a no-training at-risk control group (n = 27), which was selected a year earlier. After training, we found a small effect on a composite score of phoneme awareness (d = 0.29) and a large effect on receptive letter knowledge (d = 0.88). In first grade, however, this did not result in beneficial effects for the experimental group in word reading and spelling. Results are compared to three former intervention studies in The Netherlands and comparable studies from Denmark and Australia
Distinct Mechanisms Underlying Tolerance to Intermittent and Constant Hypoxia in Drosophila melanogaster
BACKGROUND: Constant hypoxia (CH) and intermittent hypoxia (IH) occur during several pathological conditions such as asthma and obstructive sleep apnea. Our research is focused on understanding the molecular mechanisms that lead to injury or adaptation to hypoxic stress using Drosophila as a model system. Our current genome-wide study is designed to investigate gene expression changes and identify protective mechanism(s) in D. melanogaster after exposure to severe (1% O(2)) intermittent or constant hypoxia. METHODOLOGY/PRINCIPAL FINDINGS: Our microarray analysis has identified multiple gene families that are up- or down-regulated in response to acute CH or IH. We observed distinct responses to IH and CH in gene expression that varied in the number of genes and type of gene families. We then studied the role of candidate genes (up-or down-regulated) in hypoxia tolerance (adult survival) for longer periods (CH-7 days, IH-10 days) under severe CH or IH. Heat shock proteins up-regulation (specifically Hsp23 and Hsp70) led to a significant increase in adult survival (as compared to controls) of P-element lines during CH. In contrast, during IH treatment the up-regulation of Mdr49 and l(2)08717 genes (P-element lines) provided survival advantage over controls. This suggests that the increased transcript levels following treatment with either paradigm play an important role in tolerance to severe hypoxia. Furthermore, by over-expressing Hsp70 in specific tissues, we found that up-regulation of Hsp70 in heart and brain play critical role in tolerance to CH in flies. CONCLUSIONS/SIGNIFICANCE: We observed that the gene expression response to IH or CH is specific and paradigm-dependent. We have identified several genes Hsp23, Hsp70, CG1600, l(2)08717 and Mdr49 that play an important role in hypoxia tolerance whether it is in CH or IH. These data provide further clues about the mechanisms by which IH or CH lead to cell injury and morbidity or adaptation and survival
Asymmetric Dimethylarginine, Endothelial Nitric Oxide Bioavailability and Mortality in Sepsis
Background: Plasma concentrations of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxidesynthase, are raised in patients with chronic vascular disease, causing increased cardiovascular risk and endothelialdysfunction, but the role of ADMA in acute inflammatory states is less well defined.Methods and Results: In a prospective longitudinal study in 67 patients with acute sepsis and 31 controls, digitalmicrovascular reactivity was measured by peripheral arterial tonometry and blood was collected at baseline and 2–4 dayslater. Plasma ADMA and L-arginine concentrations were determined by high performance liquid chromatography. Baselineplasma L-arginine: ADMA ratio was significantly lower in sepsis patients (median [IQR] 63 [45–103]) than in hospital controls(143 [123–166], p,0.0001) and correlated with microvascular reactivity (r = 0.34, R2 = 0.12, p = 0.02). Baseline plasma ADMAwas independently associated with 28-day mortality (Odds ratio [95% CI] for death in those in the highest quartile($0.66 mmol/L) = 20.8 [2.2–195.0], p = 0.008), and was independently correlated with severity of organ failure. Increase inADMA over time correlated with increase in organ failure and decrease in microvascular reactivity.Conclusions: Impaired endothelial and microvascular function due to decreased endothelial NO bioavailability is a potentialmechanism linking increased plasma ADMA with organ failure and death in sepsis
Gene Expression Patterns in Peripheral Blood Correlate with the Extent of Coronary Artery Disease
Systemic and local inflammation plays a prominent role in the pathogenesis of atherosclerotic coronary artery disease, but the relationship of whole blood gene expression changes with coronary disease remains unclear. We have investigated whether gene expression patterns in peripheral blood correlate with the severity of coronary disease and whether these patterns correlate with the extent of atherosclerosis in the vascular wall
Serum C-reactive protein increases the risk of venous thromboembolism: a prospective study and meta-analysis of published prospective evidence
Postprandial lipemia: factoring in lipemic response for ranking foods for their healthiness
- …
