380 research outputs found
The uniqueness of the solution of the Schrodinger equation with discontinuous coefficients
Consider the Schroeodinger equation: - Du(x) - l(x)u + s(x)u = 0, where D is
the Laplacian, l(x) > 0 and s(x) is dominated by l(x). We shall extend the
celebrated Kato's result on the asymptotic behavior of the solution to the case
where l(x) has unbounded discontinuity. The result will be used to establish
the limiting absorption principle for a class of reduced wave operators with
discontinuous coefficients.Comment: 29 (twenty-nine) pages; no figures; to appear in Reviews of
Mathematical Physic
Adiabatic Approximation for weakly open systems
We generalize the adiabatic approximation to the case of open quantum
systems, in the joint limit of slow change and weak open system disturbances.
We show that the approximation is ``physically reasonable'' as under wide
conditions it leads to a completely positive evolution, if the original master
equation can be written on a time-dependent Lindblad form. We demonstrate the
approximation for a non-Abelian holonomic implementation of the Hadamard gate,
disturbed by a decoherence process. We compare the resulting approximate
evolution with numerical simulations of the exact equation.Comment: New material added, references added and updated, journal reference
adde
Weighted Sobolev spaces of radially symmetric functions
We prove dilation invariant inequalities involving radial functions,
poliharmonic operators and weights that are powers of the distance from the
origin. Then we discuss the existence of extremals and in some cases we compute
the best constants.Comment: 38 page
Denjoy-Carleman differentiable perturbation of polynomials and unbounded operators
Let for be a -mapping with values unbounded
operators with compact resolvents and common domain of definition which are
self-adjoint or normal. Here stands for C^\om (real analytic), a
quasianalytic or non-quasianalytic Denjoy-Carleman class, , or a
H\"older continuity class C^{0,\al}. The parameter domain is either
or or an infinite dimensional convenient vector
space. We prove and review results on -dependence on of the
eigenvalues and eigenvectors of .Comment: 8 page
Connection Conditions and the Spectral Family under Singular Potentials
To describe a quantum system whose potential is divergent at one point, one
must provide proper connection conditions for the wave functions at the
singularity. Generalizing the scheme used for point interactions in one
dimension, we present a set of connection conditions which are well-defined
even if the wave functions and/or their derivatives are divergent at the
singularity. Our generalized scheme covers the entire U(2) family of
quantizations (self-adjoint Hamiltonians) admitted for the singular system. We
use this scheme to examine the spectra of the Coulomb potential and the harmonic oscillator with square inverse potential , and thereby provide a general perspective for these
models which have previously been treated with restrictive connection
conditions resulting in conflicting spectra. We further show that, for any
parity invariant singular potentials , the spectrum is determined
solely by the eigenvalues of the characteristic matrix .Comment: TeX, 18 page
Perturbation of an Eigen-Value from a Dense Point Spectrum : An Example
We study a perturbed Floquet Hamiltonian depending on a coupling
constant . The spectrum is assumed to be pure point and
dense. We pick up an eigen-value, namely , and show the
existence of a function defined on such that
for all , 0 is a point of
density for the set , and the Rayleigh-Schr\"odinger perturbation series
represents an asymptotic series for the function . All ideas
are developed and demonstrated when treating an explicit example but some of
them are expected to have an essentially wider range of application.Comment: Latex, 24 pages, 51
(In)finite extent of stationary perfect fluids in Newtonian theory
For stationary, barotropic fluids in Newtonian gravity we give simple
criteria on the equation of state and the "law of motion" which guarantee
finite or infinite extent of the fluid region (providing a priori estimates for
the corresponding stationary Newton-Euler system). Under more restrictive
conditions, we can also exclude the presence of "hollow" configurations. Our
main result, which does not assume axial symmetry, uses the virial theorem as
the key ingredient and generalises a known result in the static case. In the
axially symmetric case stronger results are obtained and examples are
discussed.Comment: Corrections according to the version accepted by Ann. Henri Poincar
Controllability of the discrete-spectrum Schrodinger equation driven by an external field
We prove approximate controllability of the bilinear Schr\"odinger equation
in the case in which the uncontrolled Hamiltonian has discrete non-resonant
spectrum. The results that are obtained apply both to bounded or unbounded
domains and to the case in which the control potential is bounded or unbounded.
The method relies on finite-dimensional techniques applied to the Galerkin
approximations and permits, in addition, to get some controllability properties
for the density matrix. Two examples are presented: the harmonic oscillator and
the 3D well of potential, both controlled by suitable potentials
On Krein-like theorems for noncanonical Hamiltonian systems with continuous spectra: application to Vlasov-Poisson
The notions of spectral stability and the spectrum for the Vlasov-Poisson
system linearized about homogeneous equilibria, f_0(v), are reviewed.
Structural stability is reviewed and applied to perturbations of the linearized
Vlasov operator through perturbations of f_0. We prove that for each f_0 there
is an arbitrarily small delta f_0' in W^{1,1}(R) such that f_0+delta f_0f_0$ is perturbed by an area preserving rearrangement, f_0 will
always be stable if the continuous spectrum is only of positive signature,
where the signature of the continuous spectrum is defined as in previous work.
If there is a signature change, then there is a rearrangement of f_0 that is
unstable and arbitrarily close to f_0 with f_0' in W^{1,1}. This result is
analogous to Krein's theorem for the continuous spectrum. We prove that if a
discrete mode embedded in the continuous spectrum is surrounded by the opposite
signature there is an infinitesimal perturbation in C^n norm that makes f_0
unstable. If f_0 is stable we prove that the signature of every discrete mode
is the opposite of the continuum surrounding it.Comment: Submitted to the journal Transport Theory and Statistical Physics. 36
pages, 12 figure
Analyticity and criticality results for the eigenvalues of the biharmonic operator
We consider the eigenvalues of the biharmonic operator subject to several
homogeneous boundary conditions (Dirichlet, Neumann, Navier, Steklov). We show
that simple eigenvalues and elementary symmetric functions of multiple
eigenvalues are real analytic, and provide Hadamard-type formulas for the
corresponding shape derivatives. After recalling the known results in shape
optimization, we prove that balls are always critical domains under volume
constraint.Comment: To appear on the proceedings of the conference "Geometric Properties
for Parabolic and Elliptic PDE's - 4th Italian-Japanese Workshop" held in
Palinuro (Italy), May 25-29, 201
- …
