380 research outputs found

    The uniqueness of the solution of the Schrodinger equation with discontinuous coefficients

    Full text link
    Consider the Schroeodinger equation: - Du(x) - l(x)u + s(x)u = 0, where D is the Laplacian, l(x) > 0 and s(x) is dominated by l(x). We shall extend the celebrated Kato's result on the asymptotic behavior of the solution to the case where l(x) has unbounded discontinuity. The result will be used to establish the limiting absorption principle for a class of reduced wave operators with discontinuous coefficients.Comment: 29 (twenty-nine) pages; no figures; to appear in Reviews of Mathematical Physic

    Adiabatic Approximation for weakly open systems

    Full text link
    We generalize the adiabatic approximation to the case of open quantum systems, in the joint limit of slow change and weak open system disturbances. We show that the approximation is ``physically reasonable'' as under wide conditions it leads to a completely positive evolution, if the original master equation can be written on a time-dependent Lindblad form. We demonstrate the approximation for a non-Abelian holonomic implementation of the Hadamard gate, disturbed by a decoherence process. We compare the resulting approximate evolution with numerical simulations of the exact equation.Comment: New material added, references added and updated, journal reference adde

    Weighted Sobolev spaces of radially symmetric functions

    Full text link
    We prove dilation invariant inequalities involving radial functions, poliharmonic operators and weights that are powers of the distance from the origin. Then we discuss the existence of extremals and in some cases we compute the best constants.Comment: 38 page

    Denjoy-Carleman differentiable perturbation of polynomials and unbounded operators

    Full text link
    Let tA(t)t\mapsto A(t) for tTt\in T be a CMC^M-mapping with values unbounded operators with compact resolvents and common domain of definition which are self-adjoint or normal. Here CMC^M stands for C^\om (real analytic), a quasianalytic or non-quasianalytic Denjoy-Carleman class, CC^\infty, or a H\"older continuity class C^{0,\al}. The parameter domain TT is either R\mathbb R or Rn\mathbb R^n or an infinite dimensional convenient vector space. We prove and review results on CMC^M-dependence on tt of the eigenvalues and eigenvectors of A(t)A(t).Comment: 8 page

    Connection Conditions and the Spectral Family under Singular Potentials

    Get PDF
    To describe a quantum system whose potential is divergent at one point, one must provide proper connection conditions for the wave functions at the singularity. Generalizing the scheme used for point interactions in one dimension, we present a set of connection conditions which are well-defined even if the wave functions and/or their derivatives are divergent at the singularity. Our generalized scheme covers the entire U(2) family of quantizations (self-adjoint Hamiltonians) admitted for the singular system. We use this scheme to examine the spectra of the Coulomb potential V(x)=e2/xV(x) = - e^2 / | x | and the harmonic oscillator with square inverse potential V(x)=(mω2/2)x2+g/x2V(x) = (m \omega^2 / 2) x^2 + g/x^2, and thereby provide a general perspective for these models which have previously been treated with restrictive connection conditions resulting in conflicting spectra. We further show that, for any parity invariant singular potentials V(x)=V(x)V(-x) = V(x), the spectrum is determined solely by the eigenvalues of the characteristic matrix UU(2)U \in U(2).Comment: TeX, 18 page

    Perturbation of an Eigen-Value from a Dense Point Spectrum : An Example

    Get PDF
    We study a perturbed Floquet Hamiltonian K+βVK+\beta V depending on a coupling constant β\beta. The spectrum σ(K)\sigma(K) is assumed to be pure point and dense. We pick up an eigen-value, namely 0σ(K)0\in\sigma(K), and show the existence of a function λ(β)\lambda(\beta) defined on IRI\subset\R such that λ(β)σ(K+βV)\lambda(\beta) \in \sigma(K+\beta V) for all βI\beta\in I, 0 is a point of density for the set II, and the Rayleigh-Schr\"odinger perturbation series represents an asymptotic series for the function λ(β)\lambda(\beta). All ideas are developed and demonstrated when treating an explicit example but some of them are expected to have an essentially wider range of application.Comment: Latex, 24 pages, 51

    (In)finite extent of stationary perfect fluids in Newtonian theory

    Full text link
    For stationary, barotropic fluids in Newtonian gravity we give simple criteria on the equation of state and the "law of motion" which guarantee finite or infinite extent of the fluid region (providing a priori estimates for the corresponding stationary Newton-Euler system). Under more restrictive conditions, we can also exclude the presence of "hollow" configurations. Our main result, which does not assume axial symmetry, uses the virial theorem as the key ingredient and generalises a known result in the static case. In the axially symmetric case stronger results are obtained and examples are discussed.Comment: Corrections according to the version accepted by Ann. Henri Poincar

    Controllability of the discrete-spectrum Schrodinger equation driven by an external field

    Get PDF
    We prove approximate controllability of the bilinear Schr\"odinger equation in the case in which the uncontrolled Hamiltonian has discrete non-resonant spectrum. The results that are obtained apply both to bounded or unbounded domains and to the case in which the control potential is bounded or unbounded. The method relies on finite-dimensional techniques applied to the Galerkin approximations and permits, in addition, to get some controllability properties for the density matrix. Two examples are presented: the harmonic oscillator and the 3D well of potential, both controlled by suitable potentials

    On Krein-like theorems for noncanonical Hamiltonian systems with continuous spectra: application to Vlasov-Poisson

    Full text link
    The notions of spectral stability and the spectrum for the Vlasov-Poisson system linearized about homogeneous equilibria, f_0(v), are reviewed. Structural stability is reviewed and applied to perturbations of the linearized Vlasov operator through perturbations of f_0. We prove that for each f_0 there is an arbitrarily small delta f_0' in W^{1,1}(R) such that f_0+delta f_0isunstable.When is unstable. When f_0$ is perturbed by an area preserving rearrangement, f_0 will always be stable if the continuous spectrum is only of positive signature, where the signature of the continuous spectrum is defined as in previous work. If there is a signature change, then there is a rearrangement of f_0 that is unstable and arbitrarily close to f_0 with f_0' in W^{1,1}. This result is analogous to Krein's theorem for the continuous spectrum. We prove that if a discrete mode embedded in the continuous spectrum is surrounded by the opposite signature there is an infinitesimal perturbation in C^n norm that makes f_0 unstable. If f_0 is stable we prove that the signature of every discrete mode is the opposite of the continuum surrounding it.Comment: Submitted to the journal Transport Theory and Statistical Physics. 36 pages, 12 figure

    Analyticity and criticality results for the eigenvalues of the biharmonic operator

    Full text link
    We consider the eigenvalues of the biharmonic operator subject to several homogeneous boundary conditions (Dirichlet, Neumann, Navier, Steklov). We show that simple eigenvalues and elementary symmetric functions of multiple eigenvalues are real analytic, and provide Hadamard-type formulas for the corresponding shape derivatives. After recalling the known results in shape optimization, we prove that balls are always critical domains under volume constraint.Comment: To appear on the proceedings of the conference "Geometric Properties for Parabolic and Elliptic PDE's - 4th Italian-Japanese Workshop" held in Palinuro (Italy), May 25-29, 201
    corecore