870 research outputs found

    Seasonality of Peroxyacetyl nitrate (PAN) in the upper troposphere and lower stratosphere using the MIPAS-E instrument

    Get PDF
    The Michelson Interferometer for Passive Atmospheric Sounding onboard ENVISAT (MIPAS–E) offers the opportunity to detect and spectrally resolve many atmospheric minor constituents affecting atmospheric chemistry. In this paper, we retrieve global, seasonal PAN volume mixing ratio (vmr) data from MIPAS-E measurements made in January, March, August and October 2003 and present results from this scheme between approximately 300 and 150 hPa. The total error on a single PAN retrieval is better than 20% outside the tropics and better than 50% in the tropics where uncertainties in water vapor dominate the total error budget. We observe clear differences in the seasonal cycle of PAN in our data, linked closely to biomass burning regions and growing seasons. Highest Northern Hemisphere mid-latitude PAN vmrs were observed in August (300–600 pptv on average) compared with the January and October data (less than 250 pptv on average). In the March 2003 data we observe highest PAN vmrs in the tropics with evidence of vmrs between 600 and 1000 pptv over Eastern Asia and over the Central Pacific at 333 hPa. The vertical distribution of PAN as a function of latitude (i.e. the zonal mean) highlights the strong inter-annual variability of PAN in the upper troposphere and lower stratosphere (UTLS), most pronounced poleward of 40° N (up to 400 pptv over the year). The variability of PAN in the tropical UTLS is also significant and we derive a variability of up to 250 pptv in the averages between January and October 2003. These results represent the first seasonal observations of PAN in the UTLS

    Long-term prevalence and predictors of prolonged grief disorder amongst bereaved cancer caregivers: A cohort study

    Get PDF
    Context: The short-term impact of prolonged grief disorder (PGD) following bereavement is well documented. The longer term sequelae of PGD however are poorly understood, possibly unrecognized, and may be incorrectly attributed to other mental health disorders and hence undertreated. Objectives: The aims of this study were to prospectively evaluate the prevalence of PGD three years post bereavement and to examine the predictors of long-term PGD in a population-based cohort of bereaved cancer caregivers. Methods: A cohort of primary family caregivers of patients admitted to one of three palliative care services in Melbourne, Australia, participated in the study (n = 301). Sociodemographic, mental health, and bereavement-related data were collected from the caregiver upon the patient\u27s admission to palliative care (T1). Further data addressing circumstances around the death and psychological health were collected at six (T2, n = 167), 13 (T3, n = 143), and 37 months (T4, n = 85) after bereavement. Results: At T4, 5% and 14% of bereaved caregivers met criteria for PGD and subthreshold PGD, respectively. Applying the total PGD score at T4, linear regression analysis found preloss anticipatory grief measured at T1 and self-reported coping measured at T2 were highly statistically significant predictors (both p \u3c 0.0001) of PGD in the longer term. Conclusion: For almost 20% of caregivers, the symptoms of PGD appear to persist at least three years post bereavement. These findings support the importance of screening caregivers upon the patient\u27s admission to palliative care and at six months after bereavement to ascertain their current mental health. Ideally, caregivers at risk of developing PGD can be identified and treated before PGD becomes entrenched

    Growth rates of stratospheric HCFC-22

    Get PDF
    International audienceThe Michelson Interferometer for Passive Atmospheric Sounding onboard ENVISAT (MIPAS-E) offers the opportunity to detect and spectrally resolve many atmospheric minor constituents affecting atmospheric chemistry. In this paper, we describe an algorithm produced to retrieve HCFC?22 profiles from MIPAS-E measurements made in 2003 and present results from this scheme between 300 and 50 mb. By comparison with ATMOS (AT?3) version 3 data, we find a mean Northern Hemisphere mid-latitude (20?50° N) HCFC?22 growth rate between 1994 and 2003 of 5.4±0.7 pptv/yr in the lower stratosphere (LS) and a mean LS Southern Hemisphere growth rate (60?80°S) of 6.0±0.7 pptv/yr in the same period. We test the feasibility of using a global data set to estimate the chemical lifetime of HCFC?22 in the LS and we derive this for two regions; 20?50° N (259±38 years) and 60?80° S (288±34 years). From these data we note a global LS lifetime of 274±25 years, significantly longer than previous estimates

    Radical anterior decompression and fusion for cervical spondylotic myelopathy

    Get PDF
    Sixty-seven patients with cervical spondylotic myelopathy were treated by radical anterior decompression and anterior spinal fusion. Of the 51 patients followed post-operatively for an average of 4.02 years, 34 obtained complete or partial relief, nine were unchanged and two deteriorated. Early complete anterior decompression and spinal fusion led to the most favourable results.published_or_final_versio

    A comparison of OEM CO retrievals from the IASI and MOPITT instruments

    Get PDF
    Observations of atmospheric carbon monoxide (CO) can only be made on continental and global scales by remote sensing instruments situated in space. One such instrument is the Infrared Atmospheric Sounding Interferometer (IASI), producing spectrally resolved, top-of-atmosphere radiance measurements from which CO vertical layers and total columns can be retrieved. This paper presents a technique for intercomparisons of satellite data with low vertical resolution. The example in the paper also generates the first intercomparison between an IASI CO data set, in this case that produced by the University of Leicester IASI Retrieval Scheme (ULIRS), and the V3 and V4 operationally retrieved CO products from the Measurements Of Pollution In The Troposphere (MOPITT) instrument. The comparison is performed for a localised region of Africa, primarily for an ocean day-time configuration, in order to develop the technique for instrument intercomparison in a region with well defined a priori. <br><br> By comparing both the standard data and a special version of MOPITT data retrieved using the ULIRS a priori for CO, it is shown that standard intercomparisons of CO are strongly affected by the differing a priori data of the retrievals, and by the differing sensitivities of the two instruments. In particular, the differing a priori profiles for MOPITT V3 and V4 data result in systematic retrieved profile changes as expected. An application of averaging kernels is used to derive a difference quantity which is much less affected by smoothing error, and hence more sensitive to systematic error. These conclusions are confirmed by simulations with model profiles for the same region. This technique is used to show that for the data that has been processed the systematic bias between MOPITT V4 and ULIRS IASI data, at MOPITT vertical resolution, is less than 7 % for the comparison data set, and on average appears to be less than 4 %. The results of this study indicate that intercomparisons of satellite data sets with low vertical resolution should ideally be performed with: retrievals using a common a priori appropriate to the geographic region studied; the application of averaging kernels to compute difference quantities with reduced a priori influence; and a comparison with simulated differences using model profiles for the target gas in the region

    Polar stratospheric cloud observations by MIPAS on ENVISAT: detection method, validation and analysis of the northern hemisphere winter 2002/2003

    Get PDF
    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on ENVISAT has made extensive measurements of polar stratospheric clouds (PSCs) in the northern hemisphere winter 2002/2003. A PSC detection method based on a ratio of radiances (the cloud index) has been implemented for MIPAS and is validated in this study with respect to ground-based lidar and space borne occultation measurements. A very good correspondence in PSC sighting and cloud altitude between MIPAS detections and those of other instruments is found for cloud index values of less than four. Comparisons with data from the Stratospheric Aerosol and Gas Experiment (SAGE) III are used to further show that the sensitivity of the MIPAS detection method for this threshold value of cloud index is approximately equivalent to an extinction limit of 10(-3) km(-1) at 1022 nm, a wavelength used by solar occultation experiments. The MIPAS cloud index data are subsequently used to examine, for the first time with any technique, the evolution of PSCs throughout the Arctic polar vortex up to a latitude close to 90degrees north on a near-daily basis. We find that the winter of 2002/2003 is characterised by three phases of very different PSC activity. First, an unusual, extremely cold phase in the first three weeks of December resulted in high PSC occurrence rates. This was followed by a second phase of only moderate PSC activity from 5-13 January, separated from the first phase by a minor warming event. Finally there was a third phase from February to the end of March where only sporadic and mostly weak PSC events took place. The composition of PSCs during the winter period has also been examined, exploiting in particular an infra-red spectral signature which is probably characteristic of NAT. The MIPAS observations show the presence of these particles on a number of occasions in December but very rarely in January. The PSC type differentiation from MIPAS indicates that future comparisons of PSC observations with microphysical and denitrification models might be revealing about aspects of solid particle existence and location

    MIPAS detection of cloud and aerosol particle occurrence in the UTLS with comparison to HIRDLS and CALIOP

    Get PDF
    Satellite infrared emission instruments require efficient systems that can separate and flag observations which are affected by clouds and aerosols. This paper investigates the identification of cloud and aerosols from infrared, limb sounding spectra that were recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), a high spectral resolution Fourier transform spectrometer on the European Space Agency's (ESA) ENVISAT (Now inoperative since April 2012 due to loss of contact). Specifically, the performance of an existing cloud and aerosol particle detection method is simulated with a radiative transfer model in order to establish, for the first time, confident detection limits for particle presence in the atmosphere from MIPAS data. The newly established thresholds improve confidence in the ability to detect particle injection events, plume transport in the upper troposphere and lower stratosphere (UTLS) and better characterise cloud distributions utilising MIPAS spectra. The method also provides a fast front-end detection system for the MIPClouds processor; a processor designed for the retrieval of macro- and microphysical cloud properties from the MIPAS data. <br><br> It is shown that across much of the stratosphere, the threshold for the standard cloud index in band A is 5.0 although threshold values of over 6.0 occur in restricted regimes. Polar regions show a surprising degree of uncertainty at altitudes above 20 km, potentially due to changing stratospheric trace gas concentrations in polar vortex conditions and poor signal-to-noise due to cold atmospheric temperatures. The optimised thresholds of this study can be used for much of the time, but time/composition-dependent thresholds are recommended for MIPAS data for the strongly perturbed polar stratosphere. In the UT, a threshold of 5.0 applies at 12 km and above but decreases rapidly at lower altitudes. The new thresholds are shown to allow much more sensitive detection of particle distributions in the UTLS, with extinction detection limits above 13 km often better than 10<sup>−4</sup> km<sup>−1</sup>, with values approaching 10<sup>−5</sup> km<sup>−1</sup> in some cases. <br><br> Comparisons of the new MIPAS results with cloud data from HIRDLS and CALIOP, outside of the poles, establish a good agreement in distributions (cloud and aerosol top heights and occurrence frequencies) with an offset between MIPAS and the other instruments of 0.5 km to 1 km between 12 km and 20 km, consistent with vertical oversampling of extended cloud layers within the MIPAS field of view. We conclude that infrared limb sounders provide a very consistent picture of particles in the UTLS, allowing detection limits which are consistent with the lidar observations. Investigations of MIPAS data for the Mount Kasatochi volcanic eruption on the Aleutian Islands and the Black Saturday fires in Australia are used to exemplify how useful MIPAS limb sounding data were for monitoring aerosol injections into the UTLS. It is shown that the new thresholds allowed such events to be much more effectively derived from MIPAS with detection limits for these case studies of 1 × 10<sup>−5</sup> km<sup>−1</sup> at a wavelength of 12 μm
    corecore