129 research outputs found
The Short-term Car Flow Planning Model in Rail Freight Company – Case Study
AbstractWith the promotion of the environmentally friendly transportation modes (the European Commission supports the freight transport operations in the rail sector), an increase in the diversification of the demand is observed. While most rail freight companies tend to apply fixed schedules, this approach is not effective turns out to be ineffective due to the need to meet the customer's specific requirements.The purpose of this paper is to present a case study of empty wagon flow planning over a medium term horizon and to discuss the opportunities of improvement of this plans by discrete optimization. In order to increase the utilization and availability of wagons, the planning procedure with a rolling horizon has to be implemented. Unfortunately, since the plan has to be updated ca. every 4hours, this planning approach needs effective optimization tools. Our hybrid two-stage approach is designed to be implemented in such business environment. This formulation allows us to solve real life instances even for a 7-day time horizon
Lithium and aluminium carbamato derivatives of the utility amide 2, 2, 6, 6- tetramethylpiperidide
Insertion of CO2 into the metal-N bond of a series of synthetically-important alkali-metal TMP (2,2,6,6-tetramethylpiperidide) complexes has been studied. Determined by X-ray crystallography, the molecular structure of the TMEDA-solvated Li derivative shows a central 8-membered (LiOCO)2 ring lying in a chair conformation with distorted tetrahedral lithium centres. While trying to obtain crystals of a THF solvated derivative, a mixed carbonato/carbamato dodecanuclear lithium cluster was formed containing two central (CO3)2- fragments and eight O2CTMP ligands with four distinct bonding modes. A bisalkylaluminium carbamato complex has also been prepared via two different methods (CO2 insertion into a pre-formed Al-N bond and ligand transfer from the corresponding lithium reagent) which adopts a dimeric structure in the solid state
Induction chemotherapy with paclitaxel, ifosfamide, and cisplatin followed by concurrent chemoradiotherapy for unresectable locally advanced head and neck cancer
Safety and Efficacy of Durvalumab With or Without Tremelimumab in Patients With PD-L1-Low/Negative Recurrent or Metastatic HNSCC The Phase 2 CONDOR Randomized Clinical Trial
IMPORTANCE: Dual blockade of programmed death ligand 1(PD-L1) and cytotoxic T-lymphocyte associated protein 4 (CTLA-4) may overcome immune checkpoint inhibition. It is unknown whether dual blockade can potentiate antitumor activity without compromising safety in patients with recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC) and low or no PD-L1 tumor cell expression. OBJECTIVE :To assess safety and objective response rate of durvalumab combined with tremelimumab. DESIGN, SETTING, AND PARTICIPANTS: The CONDOR study was a phase 2, randomized, open-label study of Durvalumab, Tremelimumab, and Durvalumab in Combination With Tremelimumab in Patients With R/M HNSCC. Eligibility criteria included PD-L1-low/negative disease that had progressed after 1 platinum-containing regimen in the R/M setting. Patients were randomized (N = 267) from April 15, 2015, to March 16, 2016, at 127 sites in North America, Europe, and Asia Pacific. INTERVENTIONS: Durvalumab (20 mg/kg every 4 weeks) + tremelimumab (1 mg/kg every 4 weeks) for 4 cycles, followed by durvalumab (10 mg/kg every 2 weeks), or durvalumab (10 mg/kg every 2 weeks) monotherapy, or tremelimumab (10 mg/kg every 4 weeks for 7 doses then every 12 weeks for 2 doses) monotherapy. MAIN OUTCOMES AND MEASURES: Safety and tolerability and efficacy measured by objective response rate. RESULTS: Among the 267 patients (220 men [82.4%]), median age (range) of patients was 61.0 (23-82) years. Grade 3/4 treatment-related adverse events occurred in 21 patients (15.8%) treated with durvalumab + tremelimumab, 8 (12.3%) treated with durvalumab, and 11 (16.9%) treated with tremelimumab. Grade 3/4 immune-mediated adverse events occurred in 8 patients (6.0%) in the combination arm only. Objective response rate (95% CI) was 7.8% (3.78%1339%) in the combination arm (n =129), 9.2% (3.46%-19.02%) for durvalumab monotherapy (n = 65), and 1.6% (0.04%-8.53%) for tremelimumab monotherapy (n = 63); median overall survival (95% CI) for all patients treated was 7.6 (4.9-10.6), 6.0 (4.0-11.3), and 5.5 (3.9-7.0) months, respectively. CONCLUSIONS AND RELEVANCE: In patients with R/M HNSCC and low or no PD-Lt tumor cell expression, all 3 regimens exhibited a manageable toxicity profile. Durvalumab and durvalumab + tremelimumab resulted in clinical benefit, with minimal observed difference between the two. A phase 3 study is under way
Investigation of the Effect of Hydroxypropyl Methylcellulose on the Phase Transformation and Release Profiles of Carbamazepine-Nicotinamide Cocrystal
Nucleophilicity of Neutral versus Cationic Magnesium Silyl Compounds
Charge and ancillary ligands affect the reactivity of monomeric tris(trimethylsilyl)silyl magnesium compounds. Diamine-coordinated (tmeda)Mg{Si(SiMe3)3}Me (tmeda = tetramethylethylenediamine; 2-tmeda) and (dpe)Mg{Si(SiMe3)3}Me (dpe =1,2-N,N-dipyrrolidenylethane; 2-dpe) are synthesized by salt elimination reactions of L2MgMeBr and KSi(SiMe3)3. Compounds 2-tmeda or 2-dpe react with MeI or MeOTf to give MeSi(SiMe3)3 as the product of Si–C bond formation. In contrast, 2-tmeda and 2-dpe undergo exclusively reaction at the magnesium methyl group with electrophiles such as Me3SiI, B(C6F5)3, HB(C6F5)2, and [Ph3C][B(C6F5)4]. These reactions provide a series of neutral, zwitterionic, and cationic magnesium silyl compounds, and from this series we have found that silyl group transfer is less effective with cationic magnesium compounds than neutral complexes
Monomerizing alkali-metal 3,5-dimethylbenzyl salts with tris(N, N -dimethyl-2-aminoethyl)amine (MeTREN) : structural and bonding implications
The series of alkali-metal (Li, Na, K) complexes of the substituted benzyl anion 3,5-dimethylbenzyl (MeCHCH ) derived from 1,3,5-trimethylbenzene (mesitylene) have been coerced into monomeric forms by supporting them with the tripodal tetradentate Lewis donor tris(N,N-dimethyl-2-aminoethyl)amine, [N(CH CHNMe), MeTREN]. Molecular structure analysis by X-ray crystallography establishes that the cation-anion interaction varies as a function of the alkali-metal, with the carbanion binding to lithium mainly in a σ fashion, to potassium mainly in a π fashion, with the interaction toward sodium being intermediate between these two extremes. This distinction is due to the heavier alkali-metal forcing and using the delocalization of negative charge into the aromatic ring to gain a higher coordination number in accordance with its size. MeTREN binds the metal in a η mode at all times. This coordination isomerism is shown by multinuclear NMR spectroscopy to also extend to the structures in solution and is further supported by density functional theory (DFT) calculations on model systems. A MeTREN stabilized benzyl potassium complex has been used to prepare a mixed-metal ate complex by a cocomplexation reaction with tBuZn, with the benzyl ligand acting as an unusual ditopic σ/π bridging ligand between the two metals, and with the small zinc atom relocalizing the negative charge back on to the lateral CH arm to give a complex best described as a contacted ion pair potassium zincate
1231 Differences between quality of life questionnaires filled out in the hospital ward and in the “garden of peace” of the hospital
8533 POSTER First Results of an Uncontrolled, Phase II Trial of Induction Chemotherapy With Cetuximab and Docetaxel-Cisplatin-5FU Followed by Cetuximab+Radiotherapy in the Responders in Locally Advanced Resectable Squamous Cell Cancer of the Head and Neck
- …
