542 research outputs found
Maize IgE binding proteins: each plant a different profile?
Background: Allergies are nearly always triggered by protein molecules and the majority of individuals with documented
immunologic reactions to foods exhibit IgE hypersensitivity reactions. In this study we aimed to understand if natural
differences, at proteomic level, between maize populations, may induce different IgE binding proteins profiles among
maize-allergic individuals. We also intended to deepen our knowledge on maize IgE binding proteins.
Results: In order to accomplish this goal we have used proteomic tools (SDS-PAGE and 2-D gel electrophoresis followed
by western blot) and tested plasma IgE reactivity from four maize-allergic individuals against four different protein fractions
(albumins, globulins, glutelins and prolamins) of three different maize cultivars. We have observed that maize cultivars have
different proteomes that result in different IgE binding proteins profiles when tested against plasma from maize-allergic
individuals. We could identify 19 different maize IgE binding proteins, 11 of which were unknown to date. Moreover, we
found that most (89.5%) of the 19 identified potential maize allergens could be related to plant stress.
Conclusions: These results lead us to conclude that, within each species, plant allergenic potential varies with genotype.
Moreover, considering the stress-related IgE binding proteins identified, we hypothesise that the environment, particularly
stress conditions, may alter IgE binding protein profiles of plant components
A cultura in vitro tem impacto nas diferenças encontradas entre os alimentos transgénicos e seus controlos
Academic freedom in Europe: reviewing UNESCO’s recommendation
This paper examines the compliance of universities in the European Union with the UNESCO Recommendation concerning the Status of Higher–Education Teaching Personnel, which deals primarily with protection for academic freedom. The paper briefly surveys the European genesis of the modern research university and academic freedom, before evaluating compliance with the UNESCO recommendation on institutional autonomy, academic freedom, university governance and tenure. Following from this, the paper examines the reasons for the generally low level of compliance with the UNESCO Recommendation within the EU states, and considers how such compliance could be improved
Investigating Aspergillus nidulans secretome during colonisation of cork cell walls
Cork, the outer bark of Quercus suber, shows a unique compositional structure, a set of remarkable properties, including high recalcitrance. Cork colonisation by Ascomycota remains largely overlooked. Herein, Aspergillus nidulans secretome on cork was analysed (2DE). Proteomic data were further complemented by microscopic (SEM) and spectroscopic (ATRFTIR) evaluation of the colonised substrate and by targeted analysis of lignin degradation compounds (UPLC-HRMS). Data showed that the fungus formed an intricate network of hyphae around the cork cell walls, which enabled polysaccharides and lignin superficial degradation, but probably not of suberin. The degradation of polysaccharides was suggested by the identification of few polysaccharide degrading enzymes (β-glucosidases and endo-1,5--L-arabinosidase). Lignin degradation, which likely evolved throughout a Fenton-like mechanism relying on the activity of alcohol oxidases, was supported by the identification of small aromatic compounds (e.g. cinnamic acid and veratrylaldehyde) and of several putative high molecular weight lignin degradation products. In addition, cork recalcitrance was corroborated by the identification of several protein species which are associated with autolysis. Finally, stringent comparative proteomics revealed that A. nidulans colonisation of cork and wood share a common set of enzymatic mechanisms. However the higher polysaccharide accessibility in cork might explain the increase of β-glucosidase in cork secretom
Genomics of Divergence along a Continuum of Parapatric Population Differentiation
MM received funding from the Max Planck innovation funds for this project. PGDF was supported by a Marie Curie European Reintegration Grant (proposal nr 270891). CE was supported by German Science Foundation grants (DFG, EI 841/4-1 and EI 841/6-1)
Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments
Magnesite forms a series of 1- to 15-m-thick beds within the approximate to2.0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680-m-thick formation is composed of a stromatolite-dolomite-'red bed' sequence formed in a complex combination of shallow-marine and non-marine, evaporitic environments. Dolomite-collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by delta C-13 values from +7.1 parts per thousand to +11.6 parts per thousand (V-PDB) and delta O-18 ranging from 17.4 parts per thousand to 26.3 parts per thousand (V-SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high delta C-13 values ranging from +9.0 parts per thousand to +11.6 parts per thousand and delta O-18 values of 20.0-25.7 parts per thousand. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water-derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high delta C-13 values reflect a combined contribution from both global and local carbon reservoirs. A C- 13-rich global carbon reservoir (delta C-13 at around +5 parts per thousand) is related to the perturbation of the carbon cycle at 2.0 Ga, whereas the local enhancement in C-13 (up to +12 parts per thousand) is associated with evaporative and restricted environments with high bioproductivity
Animal board invited review: advances in proteomics for animal and food sciences
Animal production and health (APH) is an important sector in the world economy, representing a large proportion of the budget of all member states in the European Union and in other continents. APH is a highly competitive sector with a strong emphasis on innovation and, albeit with country to country variations, on scientific research. Proteomics (the study of all proteins present in a given tissue or fluid - i.e. the proteome) has an enormous potential when applied to APH. Nevertheless, for a variety of reasons and in contrast to disciplines such as plant sciences or human biomedicine, such potential is only now being tapped. To counter such limited usage, 6 years ago we created a consortium dedicated to the applications of Proteomics to APH, specifically in the form of a Cooperation in Science and Technology (COST) Action, termed FA1002 - Proteomics in Farm Animals: www.cost-faproteomics.org. In 4 years, the consortium quickly enlarged to a total of 31 countries in Europe, as well as Israel, Argentina, Australia and New Zealand. This article has a triple purpose. First, we aim to provide clear examples on the applications and benefits of the use of proteomics in all aspects related to APH. Second, we provide insights and possibilities on the new trends and objectives for APH proteomics applications and technologies for the years to come. Finally, we provide an overview and balance of the major activities and accomplishments of the COST Action on Farm Animal Proteomics. These include activities such as the organization of seminars, workshops and major scientific conferences, organization of summer schools, financing Short-Term Scientific Missions (STSMs) and the generation of scientific literature. Overall, the Action has attained all of the proposed objectives and has made considerable difference by putting proteomics on the global map for animal and veterinary researchers in general and by contributing significantly to reduce the East-West and North-South gaps existing in the European farm animal research. Future activities of significance in the field of scientific research, involving members of the action, as well as others, will likely be established in the future.European Science Foundation (Brussels, Belgium)info:eu-repo/semantics/publishedVersio
The effects of placement in integrated preschools on the social behaviour of intellectually handicapped preschool children
- …
