1,418 research outputs found

    Initial steps towards automatic segmentation of the wire frame of stent grafts in CT data

    Get PDF
    For the purpose of obtaining a geometrical model of the wire frame of stent grafts, we propose three tracking methods to segment the stent's wire, and compare them in an experiment. A 2D test image was created by obtaining a projection of a 3D volume containing a stent. The image was modified to connect the parts of the stent's frame and thus create a single path. Ten versions of this image were obtained by adding different noise realizations. Each algorithm was started at the start of each of the ten images, after which the traveled paths were compared to the known correct path to determine the performance. Additionally, the algorithms were applied to 3D clinical data and visually inspected. The method based on the minimum cost path algorithm scored excellent in the experiment and showed good results on the 3D data. Future research will focus on establishing a geometrical model by determining the corner points and the crossings from the results of this method.\u

    Quantum noise limited and entanglement-assisted magnetometry

    Full text link
    We study experimentally the fundamental limits of sensitivity of an atomic radio-frequency magnetometer. First we apply an optimal sequence of state preparation, evolution, and the back-action evading measurement to achieve a nearly projection noise limited sensitivity. We furthermore experimentally demonstrate that Einstein-Podolsky-Rosen (EPR) entanglement of atoms generated by a measurement enhances the sensitivity to pulsed magnetic fields. We demonstrate this quantum limited sensing in a magnetometer utilizing a truly macroscopic ensemble of 1.5*10^12 atoms which allows us to achieve sub-femtoTesla/sqrt(Hz) sensitivity.Comment: To appear in Physical Review Letters, April 9 issue (provisionally

    Will I Make It On My Own? Voices and Visions of 17-Year-Old Youth in Transition

    No full text
    Voices and Visions of Youth in Transition, a longitudinal transformative youth-centered research study, examines the experiences and thoughts of youth as they transition out of foster care at the ages of 17, 19, and 21. Qualitative and quantitative survey inquiries were used to attain an understanding of the experiences of 198 youth in foster care who were 17 years old during the first wave of data collection. Nine critical areas related to the transition out of foster care were examined: education; employment; housing; high-risk behavior; access to health insurance; social connections with adults, family, and friends; the transition plan; transition concerns; and personal goals. The majority of youth reported the importance of resources, social support, and personal habits and skills as they prepare for the transition out of foster care. Youth also expressed concerns about being on their own without adequate support and not being able to make it on their own. This article highlights the study's findings from the first wave of data collection and how youth in transition are meaningfully engaged and empowered throughout the research process

    Tensor network states in time-bin quantum optics

    Full text link
    The current shift in the quantum optics community towards large-size experiments -- with many modes and photons -- necessitates new classical simulation techniques that go beyond the usual phase space formulation of quantum mechanics. To address this pressing demand we formulate linear quantum optics in the language of tensor network states. As a toy model, we extensively analyze the quantum and classical correlations of time-bin interference in a single fiber loop. We then generalize our results to more complex time-bin quantum setups and identify different classes of architectures for high-complexity and low-overhead boson sampling experiments

    The nature of aquatic landscapes in the Miocene of western Amazonia: An integrated palaeontological and geochemical approach

    Get PDF
    The Miocene Pebas Formation from the section Santa Rosa de Pichana (Loreto, Peru) was investigated using a combination of analyses of sedimentary facies, molluscan communities and taphonomy, and stable isotopes of both entire shells and growth bands in bivalves. Three sequences, comprising a succession of transgressive, maximum flooding and regressive/prograding intervals, are documented. Molluscs are most common in the transgressive/highstand intervals and are almost absent in regressive/prograding intervals. The fauna is dominated by endemic Pebasian species, such as Pachydon and Dyris spp. The nature of the deposits as well as the availability of oxygen varied in a predictable way within each of the sequences and determined the nature of the assemblages. Highest diversity was reached in the late transgressive phase before the development of dysoxia that was widespread during the late highstand and early regressive/prograding phase. The mollusc and isotope data show no indications of elevated salinities, in contrast to ichnofossils found in the section. This discrepancy is interpreted to result either from temporal separation of the ichnofossils and the mollusc fossils or from evolution beyond usual ecological tolerances of taxa that produced these ichnofossils into freshwater settings

    Gaussian optical Ising machines

    No full text
    It has recently been shown that optical parametric oscillator (OPO) Ising machines, consisting of coupled optical pulses circulating in a cavity with parametric gain, can be used to probabilistically find low-energy states of Ising spin systems. In this work, we study optical Ising machines that operate under simplified Gaussian dynamics. We show that these dynamics are sufficient for reaching probabilities of success comparable to previous work. Based on this result, we propose modified optical Ising machines with simpler designs that do not use parametric gain yet achieve similar performance, thus suggesting a route to building much larger systems
    corecore